Return to search

AUTOMATED Gmax MEASUREMENT TO EXPLORE DEGRADATION OF ARTIFICIALLY CEMENTED CARBONATE SAND

Doctor of Philosophy(PhD) / Soil Stiffness is an important parameter for any geotechnical engineering design. In laboratory tests it can be derived from stress-strain curves or from dynamic measurement based on wave propagation theory. The second method is a more accurate and direct method for measuring stiffness at very small strains. Until now dynamic measurements have usually been obtained manually from the triaxial test. Attempts have been made to automate the procedure but have apparently failed due to the high level of variability in dynamic measurements. Moreover, triaxial tests of soil can be very lengthy and manual dynamic measurements can be very tedious and impractical for long stress-path tests. In this research a computer program has been developed to automate the stiffness measurement (using bender elements) based on the cross- correlation technique. In this method the program records all the peaks and corresponding arrival times in the cross-correlation signal during the test. The stiffness is calculated and displayed on the screen continuously. The Bender Element enabled to get the small strain shear modulus. An arbitrary “Chirp” waveform of 4 kHz frequency was used for this purpose. Subsequently Bender Element test results were checked by ‘Sine’ waveforms of frequencies 5kHz to 20kHz, as well as by manual inspection of the arrival time. This thesis discusses the method and some of the difficulties in truly automating the process. Finally some results from a number of stress path tests on uncemented and cemented calcareous sediments are presented. Bender elements have been used by many researchers to determine the shear modulus at small strain. Most previous studies have used visual observation of arrival time, which is time consuming and often requires some judgement from the operator. This thesis will describe the use of cross-correlation as a method for automation of Gmax measurement. Cross-correlation has been claimed to be unreliable in the past. However, it will be shown that provided several peaks in the cross-correlation signal are monitored it is possible to follow the variation of Gmax throughout consolidation and shearing. The measurement can be made at regular intervals within the software controlling a stress-path apparatus. Details of the apparatus used and practical considerations including selection of waveform and frequency are discussed. A series of drained cyclic triaxial tests was carried out on artificially cemented and uncemented calcareous soil of dry unit weights 13, 15, and 17 kN/m3 and sheared with constant effective confining stress 300 kPa. Gypsum cement contents of 10%, 20% and 30% of the dry soil weight were used. In addition a series of stress path tests were performed on Toyuora sand samples. Results will be presented for two uncemented and one cemented sand. In addition to the bender elements, all tests had internal instrumentation to monitor axial and lateral strains. Results will be presented for Toyura sand to show that the measurements are consistent with those obtained by other methods. Results will also be presented for carbonate sand subjected to a wide range of stress paths. Finally, results will be presented for the carbonate sand cemented with gypsum. The degradation of Gmax of the cemented soil subjected to variety of monotonic and cyclic stress-paths is presented. Analysis of the results includes assessment of the factors influencing Gmax for uncemented sand. Preliminary analysis indicates that in order of importance these are the mean effective stress, the stress history, void ratio and stress ratio. For cemented sand, Gmax is initially constant and independent of stress path. After yielding the modulus degrades, becoming increasingly stress level dependent and eventually approaches the value for uncemented sand. Factors influencing the rate of degradation are discussed. For the Toyuora sand samples the effects of end restraint on the stress-strain response at small strains were investigated. The conventional method of mounting triaxial specimen has the effect of introducing friction between sample and end platen during a compression test. This inevitably restricts free lateral movement of the specimen ends. Frictional restraint at the sample ends causes the formation of 'dead zones' adjacent to the platens, resulting in non-uniform distribution of stress and strain (and of pore pressure if undrained). On the other hand the specimen with 'free' ends maintain an approximate cylindrical shape instead of barrelling when subjected to compression, resulting in a more uniform stress distribution.

Identiferoai:union.ndltd.org:ADTP/283680
Date January 2008
CreatorsMohsin, AKM
PublisherUniversity of Sydney., Department of Civil Engineering
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish
RightsThe author retains copyright of this thesis., http://www.library.usyd.edu.au/copyright.html

Page generated in 0.0019 seconds