In the context of ongoing efforts toward C-aryl glycoside synthesis, a recently developed approach to form C-aryl glycals from 2-deoxysugar lactones was expanded to form novel substrates. This approach has been applied to the synthesis of various furyl glycals, allowing access to C-aryl glycals via a benzyne furan (4+2) cycloaddition methodology. The hydroboration-oxidation of said C-aryl glycals has allowed access to C(2)-oxygenated C-aryl glycosides via the benzyne cycloaddition approach. An approach to the total synthesis of 5-hydoxyaloin A is detailed, in which regioselective benzyne furan (4+2) cycloadditions were achieved via the use of a silicon tether. Two approaches to the anthrone core have been applied; one in which an unsymmetrically-substituted aryl ring is first constructed by means of a silicon tether, and one in which the unsymmetrically-substituted ring is formed last, also utilizing a silicon tether. The latter approach has allowed access to the anthrone core of 5-hydroxyaloin A, and only a final desulfurization remains in order to access the natural product. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/28464 |
Date | 16 February 2015 |
Creators | Procko, Kristen Jean |
Source Sets | University of Texas |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0032 seconds