We are accustomed to think the phase of single particle states does not matter. After all, the phase cancels out when calculating physical observables. However, the geometric phase can cause interference even in single particle states and can be measured. Berry’s phase is a geometric phase the system accumulates as its time-dependent Hamiltonian is subjected to closed adiabatic excursion in parameter space. In this report, we explore how Berry’s phase manifests itself in various fields of physics, both classical and quantum mechanical. The Hannay angle is a classical analogue to Berry’s phase and they are related by a derivative. The Aharonov-Bohm effect is a manifestation of Berry’s phase. Net rotation of deformable bodies in the language of gauge theory can be translated as a Berry phase. The well-known BornOppenheimer approximation is a molecular Aharonov-Bohm effect and is another manifestation of Berry’s Phase.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-388414 |
Date | January 2019 |
Creators | Godskesen, Simon |
Publisher | Uppsala universitet, Teoretisk fysik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | FYSAST ; FYSKAND1100 |
Page generated in 0.0018 seconds