Return to search

Computing Most Specific Concepts in Description Logics with Existential Restrictions

Computing the most specific concept (msc) is an inference task that can be used to support the 'bottom-up' construction of knowledge bases for KR systems based on description logics. For description logics that allow for number restrictions or existential restrictions, the msc need not exist, though. Previous work on this problem has concentrated on description logics that allow for universal value restrictions and number restrictions, but not for existential restrictions. The main new contribution of this paper is the treatment of description logics with existential restrictions. More precisely, we show that, for the description logic ALE (which allows for conjunction, universal value restrictions, existential restrictions, negation of atomic concepts) the msc of an ABox-individual only exists in case of acyclic ABoxes. For cyclic ABoxes, we show how to compute an approximation of the msc. Our approach for computing the (approximation of the) msc is based on representing concept descriptions by certain trees and ABoxes by certain graphs, and then characterizing instance relationships by homomorphisms from trees into graphs. The msc/approximation operation then mainly corresponds to unraveling the graphs into trees and translating them back into concept descriptions.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:78906
Date20 May 2022
CreatorsKüsters, Ralf, Molitor, Ralf
PublisherAachen University of Technology
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:report, info:eu-repo/semantics/report, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:14-qucosa2-785040, qucosa:78504

Page generated in 0.0093 seconds