Return to search

Sobre cálculo fracionário e soluções da equação de Bessel / About fractional calculus and solutions of the Bessel's equation

Orientador: Edmundo Capelas de Oliveira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T23:00:41Z (GMT). No. of bitstreams: 1
Rodrigues_FabioGrangeiro_D.pdf: 1185818 bytes, checksum: 96f82c6ff4622e4ecdd3ccae79803dae (MD5)
Previous issue date: 2015 / Resumo: Neste trabalho é apresentado um modo de se obter soluções de um caso particular da equação hipergeométrica confluente, a equação de Bessel de ordem p, utilizando-se da teoria do cálculo de ordem arbitrária, também conhecido popularmente por cálculo fracionário. Em particular, discutimos alguns equívocos identificados na literatura e levantamos questionamentos sobre algumas interpretações a respeito dos operadores formulados segundo Riemann-Liouville quando aplicados a certos tipos de funções. Para tanto, apresentamos inicialmente os operadores de integração e diferenciação fracionárias segundo as formulações mais clássicas (Riemann-Liouville, Caputo e Grünwald-Letnikov) e, em seguida, apresentamos o operador de integrodiferenciação fracionária que é a tentativa de unificar as operações de integração e diferenciação sob um único operador. Ao longo do texto indicamos as principais propriedades destes operadores e citamos algumas das suas aplicações comumente encontrados na Matemática, Física e Engenharias / Abstract: In this thesis we discuss the solvability of the Bessel's differential equation of order p, which is a particular case of the confluent hypergeometric equation, from the perspective of the theory of calculus of arbitrary order, also commonly known as fractional calculus. In particular, we expose some misconceptions encountered in the literature and we raise some questions about interpretations of the Riemann-Liouville operators when acting on certain types of functions. In order to do so, we present the main fractional operators (Riemann-Liouville, Caputo and Grünwald-Letnikov) as well as the fractional integrodifferential operator, which is an unified view of both integration and differentiation under a single operator. We also show the main properties of these operators and mention some of its applications in Mathematics, Physics and Engeneering / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/306992
Date02 December 2015
CreatorsRodrigues, Fabio Grangeiro, 1980-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Oliveira, Edmundo Capelas de, 1952-, Vaz Júnior, Jayme, Rosário, João Maurício, Escobar, Bruto Max Pimentel, Freire, Igor Leite
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática Aplicada
Source SetsIBICT Brazilian ETDs
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Format140 p. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds