Return to search

Microwave power deposition in bounded and inhomogeneous lossy media.

We present Bessel function and Gaussian beam models for a study of microwave power deposition in bounded and inhomogeneous lossy media. The aim is to develop methods that can accurately simulate practical results commonly found in electromagnetic hyperthermic treatment, which is a noninvasive method. The Bessel function method has a closed form solution and can be used to compute accurate results of electromagnetic fields emanating from applicators with cosinusoidal aperture fields. On the other hand, the Gaussian beam method is approximate but has the capability to simplify boundary value problems and to compute fields in three-dimensions with extremely low CPU time (less than 30 sec). Although the Gaussian beam method is derived from geometrical optics theory, it performs very well in domains outside the realm of geometrical optics which stipulates that aperture dimension/λ ≥ 5 in the design of microwave systems. This condition has no relevance to the Gaussian beam method since the method shows that a limit of aperture dimension/ λ ≥ 0.9 is possible, which is a very important achievement in the design and application of microwave systems. Experimental verifications of the two theoretical models are integral parts of the presentation and show the viability of the methods.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/184389
Date January 1988
CreatorsLumori, Mikaya Lasuba Delesuk.
ContributorsWait, James R., Cetas, Thomas C., Dudley, Donald G.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0141 seconds