Return to search

Using PIC Method to Predict Transport Processes Near a Surface in Contact with Plasma

This study uses the PIC (Particle-in-cell) method to simulate unsteady three-dimensional dynamics of particles in argon plasma under low pressure, high density, and weak ionization between two planar electrodes subject to a sudden biased voltage. Plasma has been widely used in materials processing, film manufacturing, nuclear fusion, lamps, etc. Properties of plasmas are also becoming important area for research. This work includes elastic collisions between electrons and neutrals, ions and neutrals, and inelastic collisions resulting in ionization from impacting neutrals by electrons, and charge exchange between ions and neutrals, and Coulomb collisions between electrons and ions. The model ignores magnetic field, secondary electron emission, recombination between ions and electrons, and assumes uniform distribution of the neutrals having velocity of Maxwellian distribution. The computed results show the effects of elastic and inelastic collisions on the characteristics of plasma and sheath (space charge region) in front of the workpiece surface. Unsteady mass, momentum and energy transport from the bulk plasma through sheath to the workpiece is confirmatively and exploratorily studied after successful comparison between PIC prediction and experimental data has been made.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0814107-140413
Date14 August 2007
CreatorsLin, Li-Ling
ContributorsJang, Jiin-Yuh, Hsiao, Fei-Bin, Chen, Han-Taw, Wei, Peng-Sheng
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0814107-140413
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0019 seconds