Return to search

Design of Stroked Curve Rendering Circuit

Bezier curve is one of the most fundamental primitives for the modeling of fonts and two-dimensional (2D) computer graphics objects. How to efficiently render the Bezier curve becomes an important task for many embedded applications. This thesis first proposed a novel adaptive curve-rendering algorithm which can determine the coordinates of all the crossing points of the curve and scan-lines with the required accuracy for the graphics fill operation. Next, for the rendering of stroked Bezier curves, this thesis proposed several possible rendering circuit architectures. The performance and gate count of these architectures have been estimated, and compared in this thesis. It has been found that the design based on the table-lookup normal vector calculator can lead to the fastest circuit, while the design based on the Cordic operator represents the most economic design. A basic Bezier curve rendering circuit has been implemented in this thesis, and used to accelerate a prototype OpenVG embedded systems.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0906110-144327
Date06 September 2010
CreatorsWang, Min-Hung
ContributorsShiann-Rong Kuang, Yun-Nan Chang, Shen-Fu Hsiao
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0906110-144327
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0011 seconds