Return to search

Transition Metal Catalysis: Activation of CO2, C–H, and C–O Bonds En Route to Carboxylic Acids, Biaryls, and N-containing Heterocycles

Transition metal catalysis is a powerful tool for the construction of biologically active and pharmaceutically relevant architectures. With the challenge of continually depleting resources that this generation of scientists faces, it is becoming increasingly important to develop sustainable technologies for organic synthesis that utilize abundant and renewable feedstocks while minimizing byproduct formation and shortening the length of synthetic sequences by removing unnecessary protecting group manipulations and functionalizations. To this end, we have developed four new methods that transform inexpensive starting materials to valuable products. This dissertation covers the following key areas: 1) activation of CO2 for a mild and functional group tolerant synthesis of carboxylic acids, 2) oxidative twofold C–H bond activations as a strategy toward biaryls, 3) migratory O- to N-rearrangements in pyridines and related heterocycles for the preparation of N-alkylated heterocycles, and 4) asymmetric hydrogenations of cyclic imines and enamines en route to chiral 1,2- and 1,3-diamines and macrocyclic peptides.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/31986
Date12 January 2012
CreatorsYeung, Charles See Ho
ContributorsDong, Vy Maria
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0072 seconds