Return to search

Análise automatizada dos efeitos do alargamento de pulso induzido em single event transients

Aplicações em ambientes expostos a elevados níveis de radiação ionizante impõem uma série de desafios ao desenvolvimento de projetos de circuitos integrados na tecnologia Complementary Metal–Oxide–Semiconductor (CMOS), uma vez que circuitos CMOS estão sujeitos às falhas transientes oriundas de radiação externa. Num circuito do tipo CMOS, as áreas sensíveis aos efeitos da incidência de partículas ionizantes são as regiões dreno-substrato reversamente polarizadas, existentes nos transistores em regime de corte (VARGAS; NICOLAIDIS, 1994). Com o avanço tecnológico e consequente diminuição das dimensões dos dispositivos semicondutores, estes efeitos degradantes tornam-se uma preocupação constante devido às menores características físicas dos transistores (WANG et al., 2007). Os circuitos integrados apresentam, durante a sua vida útil, um processo de degradação das suas características iniciais. Assim, a esse processo de degradação também chamamos de envelhecimento (aging). É um processo lento e cumulativo provocado por todos os mecanismos que acabam por alterar os parâmetros físicos e eléctricos dos circuitos, diminuindo o seu tempo de vida útil (FU; LI; FORTES, 2008). Dentre os efeitos de variabilidade temporal, os que mais têm causado interesse da comunidade científica são o Randon Telegraph Noise (RTN) com sua origem na atividade de traps (armadilhas) de interface e Single Event Transients (SET) com sua origem na radiação ionizante ao qual o circuito é exposto. Em relação aos efeitos de degradação destaca-se o efeito Bias Temperature Instability (BTI) (VALDUGA, 2012), que da mesma forma que o RTS, tem sua origem vinculada aos efeitos das traps.Modelos padrão para simulação elétrica de circuitos não levam em consideração os efeitos causados por armadilhas de cargas tais como Bias Temperature Instability (BTI) e Random Telegraph Noise (RTN). Tais variabilidades em nível de dispositivo podem causar perda de confiabilidade, como por exemplo, o surgimento de Propagation-Induced Pulse Broadening (PIPB). Conforme o escalonamento (scaling) tecnológico, a velocidade das portas lógicas aumenta e os SETs podem ser propagados através de circuito combinacional e, inclusive, sofrer alargamento, caso a largura do pulso transiente supere um valor mínimo crítico que depende da tecnologia (DODD et al., 2004), caracterizando assim um PIPB. Com base nisso, técnicas de injeção de falhas usadas em circuitos complexos não se mostram eficientemente previsíveis, levando a uma subestimativa da sensibilidade de circuitos à propagação de SETs. Com a utilização de um simulador elétrico que agrega a análise de BTI, temos melhores estimativas dos efeitos de PIPB na degradação de um circuito, que pode provocar violações de temporização em sistemas síncronos. Dessa forma, pode-se então trabalhar em uma projeção do circuito de forma a torná-lo mais robusto em relação aos efeitos de envelhecimento e na proteção às falhas transientes. Com base no que foi anteriormente apresentado, este trabalho analisa o comportamento de circuitos através de simulações elétricas de radiação ionizante, permitindo avaliações da suscetibilidade e confiabilidade de circuitos integrados aos efeitos de falhas transientes. Para a realização destes experimentos, foram realizadas simulações elétricas considerando-se os efeitos de envelhecimento. Para uma cadeia lógica de 2000 inversores sequencialmente dispostos na tecnologia 32nm pode-se prever que o pulso transiente está sujeito a um alargamento de sete vezes sua largura inicial no momento da incidência, para transistores em suas dimensões mínimas. A partir da proposta apresentada, pode-se determinar a possibilidade de alargamento ou atenuação de um SET ao longo do circuito de maneira eficiente para que as devidas precauções possam ser tomadas. / Applications in environments exposed to high levels of ionizing radiation impose a number of challenges for the development of integrated circuit designs in CMOS technology. CMOS circuits are vulnerable to transient faults from external radiation. In a CMOS circuit, areas sensitive to the effects of ionizing particle incidence are as reverse polarized drain-substrate regions in the transistors at cut-off (VARGAS; NICOLAIDIS, 1994). The technological advance and consequent downscaling of semiconductor devices, these degrading factors become a constant concern due to the higher vulnerability to transient faults (WANG et al., 2007). The integrated circuits have during their useful life a process of degradation of their initial characteristics. Thus, this process of degradation is also called aging. It is a slow and cumulative process caused by all the mechanisms that end up changing the physical and electrical parameters of the circuits, decreasing their useful timing life (FU; LI; FORTES, 2008). Among the temporal variability effects, the Randon Telegraph Noise (RTN) with its origin in the activity of traps (interface traps) and Single Event Transients (SET) with their origin in the ionizing radiation circuit is exposed. In terms of the effects of degradation, the Bias Temperature Instability (BTI) effect (VALDUGA, 2012) stands out, which, like the RTS, has its origin linked to the effects of the traps. Standard electrical simulation models do not take into account the effects caused by charged traps such as Bias temperature instability (BTI) and random telegraph noise (RTN). Such device-level variability can cause reduced reliability, for example, the Propagation-Induced Pulse Broadening (PIPB). According to the technological scaling, the speed of the logic gates increases and the SETs can be propagated through a combinational circuit and even may suffer broadening if the transient pulse width exceeds a critical minimum value that depends on the technology (DODD et al., 2004 ), characterizing a PIPB. Based on this, fault injection techniques in complex circuits are not efficiently in predicting, leading to an underestimation of circuit sensitivity to propagation of Single Event Transients (SETs). Using an electrical simulator that aggregates a BTI analysis, we have better estimates of PIPB effects on circuit degradation, which may lead to timing violations in synchronous systems. Then we can put effort in circuit design in order to make it more robust regarding to aging effects and transient faults protection. Based on what has been previously presented, this thesis analyzes the behavior of circuits through electrical simulations of ionizing radiation, allowing susceptibility and reliability evaluations of integrated circuits to the effects of transient faults using electrical simulations. For the accomplishment of these experiments, electrical simulations were performance considering the effects of aging. For a logic chain of 2000 inverters sequentially arranged in the 32nm technology it can be predicted that the transient pulse is subjected to a broadening of seven times its initial width at the time of incidence for transistors with minimum dimensions. From the analysis presented, we can evaluate the possibility of broadening or shrinking of SETs thought the circuit in an efficient way to improve radiation-hardening techniques.

Identiferoai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/171361
Date January 2017
CreatorsSilva, Michele Gusson Vieira da
ContributorsWirth, Gilson Inacio
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds