Dans cette thèse, le comportement d'un modèle mathématique permettant de transcrire la dynamique neuronale est étudié : le système de FitzHugh-Nagumo. En particulier, nous nous intéressons au caractère aléatoire d'ouverture et de fermeture des canaux ioniques d'un neurone qui reçoit ou non un stimulus. Ce caractère aléatoire de la dynamique neuronale est considéré, dans notre modèle, comme un bruit. Dans un premier temps, le comportement du modèle de FitzHugh-Nagumo a été caractérisé au voisinage de la bifurcation d'Andronov-Hopf qui traduit la transition entre l'état d'activation et l'état de repos du neurone. Classiquement, un neurone positionné à l'état de repos ne produit aucun potentiel d'action. Cependant, il a été montré un phénomène pour lequel une quantité appropriée de bruit permet la production de potentiels d'action des plus réguliers : la résonance cohérente. Le deuxième effet observé lors de simulations numériques permet au neurone d'améliorer la détection et l'encodage d'un signal subliminal : il s'agit de la résonance stochastique. De plus, cette thèse s'inscrit dans un contexte électronique puisqu'en plus de simuler numériquement le système de FitzHugh-Nagumo, les résultats de simulations ont également été confirmés en réalisant un circuit électronique. En effet, nous avons reproduit la dynamique non linéaire du système de FitzHugh-Nagumo à l'aide de ce circuit électronique. Cela a permis de mettre en évidence expérimentalement les deux phénomènes de résonance cohérente et de résonance stochastique pour lesquelles le bruit peut avoir une influence constructive sur le comportement de notre circuit électronique.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00692347 |
Date | 16 September 2011 |
Creators | Lassere, Gaëtan |
Publisher | Université de Bourgogne |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0023 seconds