Return to search

Impact analysis of characteristics in product development : Change in product property with respect to component generations

Scania has developed a unique modular product system which is an important successfactor, creating exibility and lies at the heart of their business model. R&Duse product and vehicle product properties to describe the product key factors. Theseproduct properties are both used during the development of new features and products,and also utilized by the project oce to estimate the total contribution of a project.Scania want to develop a new method to understand and be able to track and comparethe projects eect over time and also predict future vehicle improvements. In this thesis, we investigate how to quantify the impact on vehicle product propertiesand predict component improvements, based on data sources that have not beenutilized for these purposes before. The impact objective is ultimately to increase the understandingof the development process of heavy vehicles and the aim for this projectwas to provide statistical methods that can be used for investigative and predictivepurposes. First, with analysis of variance we statistically veried and quantied differencesin a product property between comparable vehicle populations with respectto component generations. Then, Random Forest and Articial Neural Networks wereimplemented to predict future eect on product property with respect to componentimprovements. We could see a dierence of approximately 10 % between the comparablecomponents of interest, which was more than the expected dierence. Theexpectations are based on performance measurements from a test environment. Theimplemented Random Forest model was not able to predict future eect based on theseperformance measures. Articial Neural Networks was able to capture structures fromthe test environment and its predictive performance and reliability was, under the givencircumstances, relatively good.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-136911
Date January 2017
CreatorsLindström, Frej, Andersson, Daniel
PublisherUmeå universitet, Institutionen för matematik och matematisk statistik, Umeå universitet, Institutionen för matematik och matematisk statistik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.9127 seconds