Return to search

Modelos agrometeorológicos para previsão de pragas e doenças em Coffea arabica L. em Minas Gerais /

Orientador: Glauco de Souza Rolim / Resumo: O café é a bebida mais consumida no mundo e uma das principais causas para a redução da produtividade e qualidade são os problemas fitossanitários. A estratégia mais comum de controle dessas doenças e pragas é a aplicação de fungicidas e inseticidas foliares, dependendo da intensidade dos mesmos na região. Esse método tradicional pode ser melhorado utilizando de sistemas de alertas por meio de modelos de estimativas dos índices de doenças e pragas. Este trabalho tem como OBJETIVOS: A) Calibrar as variáveis meteorológicas: temperatura do ar e precipitação pluviométrica do sistema ECMWF em relação aos dados de reais de superfície mensurados pelo sistema nacional de meteorologia (INMET) para o estado de Minas Gerais; B) Avaliar quais os elementos meteorológicos exercem maior influência nas principais pragas (broca e bicho-mineiro) e doenças (ferrugem e cercosporiose) do cafeeiro arábica nas principais localidades cafeeiras do Sul de Minas Gerais e do Cerrado Mineiro; C) Desenvolver modelos agrometeorológicos para previsão de pragas e doenças em função das variáveis meteorológicas usando algoritmos de machine learning e procurando uma antecipação temporal suficiente para tomada de decisões. MATERIAL E MÉTODOS: Para o objetivo “A” foram utilizados dados climáticos mensais de temperatura do ar (T, ºC) e precipitação pluviométrica (P, mm) provenientes do ECMWF e do INMET no período de 1979 a 2017. A evapotranspiração potencial foi estimada por Thornthwaite (1948) e balanço hídrico p... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Coffee is the most consumed beverage in the world, but phytosanitary problems are amongst the main causes of reduced productivity and quality. The application of foliar fungicides and insecticides is the most common strategy for controlling these diseases and pests, depending on their intensity in a region. This traditional method can be improved by using alert systems with models of disease and pest indices. This work has as OBJECTIVES: A) To calibrate the meteorological variables: air temperature and rainfall of the European Center for Medium Range Weather Forecast (ECMWF) in relation to the real surface data measured by the national meteorological system (INMET) for the state of Minas Gerais; B) To evaluate which meteorological elements, and at what time, have a greater influence on the main pests (coffee borer and coffee miner) and diseases (coffee rust and cercosporiosis) of Coffee arabica in the main coffee regions of the South of Minas Gerais and Cerrado Mineiro; C) To develop agrometeorological models for pest and disease prediction in function of the meteorological variables of the South of Minas Gerais and Cerrado Mineiro using algorithms of machine learning with sufficient temporal anticipation for decision making. MATERIAL AND METHODS: To achieve goal "A" we used monthly climatic data (T, ºC) and rainfall (P, mm) from the ECMWF and INMET from 1979 to 2015. Potential evapotranspiration was estimated by Thornthwaite (1948) and water balance by Thornthwaite and Mathe... (Complete abstract click electronic access below) / Doutor

Identiferoai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000925871
Date January 2019
CreatorsAparecido, Lucas Eduardo de Oliveira.
ContributorsUniversidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Ciências Agrárias e Veterinárias.
PublisherJaboticabal,
Source SetsUniversidade Estadual Paulista
LanguagePortuguese
Detected LanguagePortuguese
Typetext
Formatf.
RelationSistema requerido: Adobe Acrobat Reader

Page generated in 0.0021 seconds