Extraire l'opinion publique en analysant les Big Social data a connu un essor considérable en raison de leur nature interactive, en temps réel. En effet, les données issues des réseaux sociaux sont étroitement liées à la vie personnelle que l’on peut utiliser pour accompagner les grands événements en suivant le comportement des personnes. C’est donc dans ce contexte que nous nous intéressons particulièrement aux méthodes d’analyse du Big data. La problématique qui se pose est que ces données sont tellement volumineuses et hétérogènes qu’elles en deviennent difficiles à gérer avec les outils classiques. Pour faire face aux défis du Big data, de nouveaux outils ont émergés. Cependant, il est souvent difficile de choisir la solution adéquate, car la vaste liste des outils disponibles change continuellement. Pour cela, nous avons fourni une étude comparative actualisée des différents outils utilisés pour extraire l'information stratégique du Big Data et les mapper aux différents besoins de traitement.La contribution principale de la thèse de doctorat est de proposer une approche d’analyse générique pour détecter de façon automatique des tendances d’opinion sur des sujets donnés à partir des réseaux sociaux. En effet, étant donné un très petit ensemble de hashtags annotés manuellement, l’approche proposée transfère l'information du sentiment connue des hashtags à des mots individuels. La ressource lexicale qui en résulte est un lexique de polarité à grande échelle dont l'efficacité est mesurée par rapport à différentes tâches de l’analyse de sentiment. La comparaison de notre méthode avec différents paradigmes dans la littérature confirme l'impact bénéfique de notre méthode dans la conception des systèmes d’analyse de sentiments très précis. En effet, notre modèle est capable d'atteindre une précision globale de 90,21%, dépassant largement les modèles de référence actuels sur l'analyse du sentiment des réseaux sociaux. / Extracting public opinion by analyzing Big Social data has grown substantially due to its interactive nature, in real time. In fact, our actions on social media generate digital traces that are closely related to our personal lives and can be used to accompany major events by analysing peoples' behavior. It is in this context that we are particularly interested in Big Data analysis methods. The volume of these daily-generated traces increases exponentially creating massive loads of information, known as big data. Such important volume of information cannot be stored nor dealt with using the conventional tools, and so new tools have emerged to help us cope with the big data challenges. For this, the aim of the first part of this manuscript is to go through the pros and cons of these tools, compare their respective performances and highlight some of its interrelated applications such as health, marketing and politics. Also, we introduce the general context of big data, Hadoop and its different distributions. We provide a comprehensive overview of big data tools and their related applications.The main contribution of this PHD thesis is to propose a generic analysis approach to automatically detect trends on given topics from big social data. Indeed, given a very small set of manually annotated hashtags, the proposed approach transfers information from hashtags known sentiments (positive or negative) to individual words. The resulting lexical resource is a large-scale lexicon of polarity whose efficiency is measured against different tasks of sentiment analysis. The comparison of our method with different paradigms in literature confirms the impact of our method to design accurate sentiment analysis systems. Indeed, our model reaches an overall accuracy of 90.21%, significantly exceeding the current models on social sentiment analysis.
Identifer | oai:union.ndltd.org:theses.fr/2018ANGE0011 |
Date | 04 July 2018 |
Creators | El alaoui, Imane |
Contributors | Angers, Université Ibn Tofail. Faculté des sciences de Kénitra, Kobi, Abdessamad, Todoskoff, Alexis, Messoussi, Rochdi |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds