Return to search

Operating system support for warehouse-scale computing

Modern applications are increasingly backed by large-scale data centres. Systems software in these data centre environments, however, faces substantial challenges: the lack of uniform resource abstractions makes sharing and resource management inefficient, infrastructure software lacks end-to-end access control mechanisms, and work placement ignores the effects of hardware heterogeneity and workload interference. In this dissertation, I argue that uniform, clean-slate operating system (OS) abstractions designed to support distributed systems can make data centres more efficient and secure. I present a novel distributed operating system for data centres, focusing on two OS components: the abstractions for resource naming, management and protection, and the scheduling of work to compute resources. First, I introduce a reference model for a decentralised, distributed data centre OS, based on pervasive distributed objects and inspired by concepts in classic 1980s distributed OSes. Translucent abstractions free users from having to understand implementation details, but enable introspection for performance optimisation. Fine-grained access control is supported by combining storable, communicable identifier capabilities, and context-dependent, ephemeral handle capabilities. Finally, multi-phase I/O requests implement optimistically concurrent access to objects while supporting diverse application-level consistency policies. Second, I present the DIOS operating system, an implementation of my model as an extension to Linux. The DIOS system call API is centred around distributed objects, globally resolvable names, and translucent references that carry context-sensitive object meta-data. I illustrate how these concepts support distributed applications, and evaluate the performance of DIOS in microbenchmarks and a data-intensive MapReduce application. I find that it offers improved, finegrained isolation of resources, while permitting flexible sharing. Third, I present the Firmament cluster scheduler, which generalises prior work on scheduling via minimum-cost flow optimisation. Firmament can flexibly express many scheduling policies using pluggable cost models; it makes high-quality placement decisions based on fine-grained information about tasks and resources; and it scales the flow-based scheduling approach to very large clusters. In two case studies, I show that Firmament supports policies that reduce colocation interference between tasks and that it successfully exploits flexibility in the workload to improve the energy efficiency of a heterogeneous cluster. Moreover, my evaluation shows that Firmament scales the minimum-cost flow optimisation to clusters of tens of thousands of machines while still making sub-second placement decisions.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:753436
Date January 2018
CreatorsSchwarzkopf, Malte
ContributorsHand, Steven ; Leslie, Ian ; Watson, Robert N. M.
PublisherUniversity of Cambridge
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.repository.cam.ac.uk/handle/1810/279062

Page generated in 0.0021 seconds