Return to search

ADVANCES ON BILINEAR MODELING OF BIOCHEMICAL BATCH PROCESSES

[EN] This thesis is aimed to study the implications of the statistical modeling approaches proposed for the bilinear modeling of batch processes, develop new techniques to overcome some of the problems that have not been yet solved and apply them to data of biochemical processes. The study, discussion and development of the new methods revolve around the four steps of the modeling cycle, from the alignment, preprocessing and calibration of batch data to the monitoring of batches trajectories. Special attention is given to the problem of the batch synchronization, and its effect on the modeling from different angles.

The manuscript has been divided into four blocks. First, a state-of- the-art of the latent structures based-models in continuous and batch processes and traditional univariate and multivariate statistical process control systems is carried out.

The second block of the thesis is devoted to the preprocessing of batch data, in particular, to the equalization and synchronization of batch trajectories. The first section addresses the problem of the lack of equalization in the variable trajectories. The different types of unequalization scenarios that practitioners might finnd in batch processes are discussed and the solutions to equalize batch data are introduced. In the second section, a theoretical study of the nature of batch processes and of the synchronization of batch trajectories as a prior step to bilinear modeling is carried out. The topics under discussion are i) whether the same synchronization approach must be applied to batch data in presence of different types of asynchronisms, and ii) whether synchronization is always required even though the length of the variable trajectories are constant across batches. To answer these questions, a thorough study of the most common types of asynchronisms that may be found in batch data is done. Furthermore, two new synchronization techniques are proposed to solve the current problems in post-batch and real-time synchronization. To improve fault detection and classification, new unsupervised control charts and supervised fault classifiers based on the information generated by the batch synchronization are also proposed.

In the third block of the manuscript, a research work is performed on the parameter stability associated with the most used synchronization methods and principal component analysis (PCA)-based Batch Multivariate Statistical Process Control methods. The results of this study have revealed that accuracy in batch synchronization has a profound impact on the PCA model parameters stability. Also, the parameter stability is closely related to the type of preprocessing performed in batch data, and the type of model and unfolding used to transform the three-way data structure to two-way. The setting of the parameter stability, the source of variability remaining after preprocessing and the process dynamics should be balanced in such a way that multivariate statistical models are accurate in fault detection and diagnosis and/or in online prediction.

Finally, the fourth block introduces a graphical user-friendly interface developed in Matlab code for batch process understanding and monitoring. To perform multivariate analysis, the last developments in process chemometrics, including the methods proposed in this thesis, are implemented. / [ES] La presente tesis doctoral tiene como objetivo estudiar las implicaciones de los métodos estadísticos propuestos para la modelización bilineal de procesos por lotes, el desarrollo de nuevas técnicas para solucionar algunos de los problemas más complejos aún por resolver en esta línea de investigación y aplicar los nuevos métodos a datos provenientes de procesos bioquímicos para su evaluación estadística. El estudio, la discusión y el desarrollo de los nuevos métodos giran en torno a las cuatro fases del ciclo de modelización: desde la sincronización, ecualización, preprocesamiento y calibración de los datos, a la monitorización de las trayectorias de las variables del proceso. Se presta especial atención al problema de la sincronización y su efecto en la modelización estadística desde distintas perspectivas.

El manuscrito se ha dividido en cuatro grandes bloques. En primer lugar, se realiza una revisión bibliográfica de las técnicas de proyección sobre estructuras latentes para su aplicación en procesos continuos y por lotes, y del diseño de sistemas de control basados en modelos estadísticos multivariantes.

El segundo bloque del documento versa sobre el preprocesamiento de los datos, en concreto, sobre la ecualización y la sincronización. La primera parte aborda el problema de la falta de ecualización en las trayectorias de las variables. Se discuten las diferentes políticas de muestreo que se pueden encontrar en procesos por lotes y las soluciones para ecualizar las variables. En la segunda parte de esta sección, se realiza un estudio teórico sobre la naturaleza de los procesos por lotes y de la sincronización de las trayectorias como paso previo a la modelización bilineal. Los temas bajo discusión son: i) si se debe utilizar el mismo enfoque de sincronización en lotes afectados por diferentes tipos de asincronismos, y ii) si la sincronización es siempre necesaria aún y cuando las trayectorias de las variables tienen la misma duración en todos los lotes. Para responder a estas preguntas, se lleva a cabo un estudio exhaustivo de los tipos más comunes de asincronismos que se pueden encontrar en este tipo de datos. Además, se proponen dos nuevas técnicas de sincronización para resolver los problemas existentes en aplicaciones post-morten y en tiempo real. Para mejorar la detección de fallos y la clasificación, también se proponen nuevos gráficos de control no supervisados y clasificadores de fallos supervisados en base a la información generada por la sincronización de los lotes.

En el tercer bloque del manuscrito se realiza un estudio de la estabilidad de los parámetros asociados a los métodos de sincronización y a los métodos estadístico multivariante basados en el Análisis de Componentes Principales (PCA) más utilizados para el control de procesos. Los resultados de este estudio revelan que la precisión de la sincronización de las trayectorias tiene un impacto significativo en la estabilidad de los parámetros de los modelos PCA. Además, la estabilidad paramétrica está estrechamente relacionada con el tipo de preprocesamiento realizado en los datos de los lotes, el tipo de modelo a justado y el despliegue utilizado para transformar la estructura de datos de tres a dos dimensiones. El ajuste de la estabilidad de los parámetros, la fuente de variabilidad que queda después del preprocesamiento de los datos y la captura de las dinámicas del proceso deben ser a justados de forma equilibrada de tal manera que los modelos
estadísticos multivariantes sean precisos en la detección y diagnóstico de fallos y/o en la predicción en tiempo real.

Por último, el cuarto bloque del documento describe una interfaz gráfica de usuario que se ha desarrollado en código Matlab para la comprensión y la supervisión de procesos por lotes. Para llevar a cabo los análisis multivariantes, se han implementado los últimos desarrollos en la quimiometría de proc / [CA] Aquesta tesi doctoral te com a objectiu estudiar les implicacions dels mètodes de modelització estadística proposats per a la modelització bilineal de processos per lots, el desenvolupament de noves tècniques per resoldre els problemes encara no resolts en aquesta línia de recerca i aplicar els nous mètodes a les dades dels processos bioquímics. L'estudi, la discussió i el desenvolupament dels nous mètodes giren entorn a les quatre fases del cicle de modelització, des de l'alineació, preprocessament i el calibratge de les dades provinents de lots, a la monitorització de les trajectòries. Es presta especial atenció al problema de la sincronització per lots, i el seu efecte sobre el modelatge des de diferents angles.

El manuscrit s'ha dividit en quatre grans blocs. En primer lloc, es realitza una revisió bibliogràfica dels principals mètodes basats en tècniques de projecció sobre estructures latents en processos continus i per lots, així com dels sistemes de control estadístics multivariats.

El segon bloc del document es dedica a la preprocessament de les dades provinents de lots, en particular, l' equalització i la sincronització. La primera part aborda el problema de la manca d'equalització en les trajectòries de les variables. Es discuteixen els diferents tipus d'escenaris en que les variables estan mesurades a distints intervals i les solucions per equalitzar-les en processos per lots. A la segona part d'aquesta secció es porta a terme un estudi teòric de la naturalesa dels processos per lots i de la sincronització de les trajectòries de lots com a pas previ al modelatge bilineal. Els temes en discussió són: i) si el mateix enfocament de sincronització ha de ser aplicat a les dades del lot en presència de diferents tipus de asincronismes, i ii) si la sincronització sempre es requereix tot i que la longitud de les trajectòries de les variables són constants en tots el lots. Per respondre a aquestes preguntes, es du a terme un estudi exhaustiu dels tipus més comuns de asincronismes que es poden trobar en les dades provinents de lots. A més, es proposen dues noves tècniques de sincronització per resoldre els problemes existents la sincronització post-morten i en temps real. Per millorar la detecció i la classificació de anomalies, també es proposen nous gràfics de control no supervisats i classificadors de falla supervisats dissenyats en base a la informació generada per la sincronització de lots.

En el tercer bloc del manuscrit es realitza un treball de recerca sobre l'estabilitat dels paràmetres associats als mètodes de sincronització i als mètodes estadístics multivariats basats en l'Anàlisi de Components Principals (PCA) més utilitzats per al control de processos. Els resultats d'aquest estudi revelen que la precisió en la sincronització per lots te un profund impacte en l'estabilitat dels paràmetres dels models PCA. A més, l'estabilitat paramètrica està estretament relacionat amb el tipus de preprocessament realitzat en les dades provinents de lots, el tipus de model i el desplegament utilitzat per transformar l'estructura de dades de tres a dos dimensions. L'ajust de l'estabilitat dels paràmetres, la font de variabilitat que queda després del preprocessament i la captura de la dinàmica de procés ha de ser equilibrada de tal manera que els models estadístics multivariats són precisos en la detecció i diagnòstic de fallades i/o en la predicció en línia.

Finalment, el quart bloc del document introdueix una interfície gràfica d'usuari que s'ha dissenyat e implementat en Matlab per a la comprensió i la supervisió de processos per lots. Per dur a terme aquestes anàlisis multivariats, s'han implementat els últims desenvolupaments en la quimiometria de processos, incloent-hi els mètodes proposats en aquesta tesi. / González Martínez, JM. (2015). ADVANCES ON BILINEAR MODELING OF BIOCHEMICAL BATCH PROCESSES [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/55684 / Premios Extraordinarios de tesis doctorales

Identiferoai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/55684
Date07 October 2015
CreatorsGonzález Martínez, José María
ContributorsFerrer Riquelme, Alberto José, Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
PublisherUniversitat Politècnica de València
Source SetsUniversitat Politècnica de València
LanguageEnglish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion
Rightshttp://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess

Page generated in 0.0044 seconds