Return to search

The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

High-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parameters a greater than or similar to 0.84. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an 8 M-circle dot pre-SN star in a close binary with a 12 M-circle dot companion with an orbital period of approximate to 1.2 days, finding that it is possible to obtain a BH with a high spin parameter a greater than or similar to 0.8 even when the expected spin parameter from direct collapse is a less than or similar to 0.3. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/625738
Date01 September 2017
CreatorsBatta, Aldo, Ramirez-Ruiz, Enrico, Fryer, Chris
ContributorsUniv Arizona, Dept Phys
PublisherIOP PUBLISHING LTD
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeArticle
Rights© 2017. The American Astronomical Society. All rights reserved.
Relationhttp://stacks.iop.org/2041-8205/846/i=2/a=L15?key=crossref.5cecd83a002ac710af5967941de543ee

Page generated in 0.0019 seconds