Return to search

Infiltration rate and hydraulic conductivity of sand-silt soils in the Piedmont physiographic region

In this study, a two phase investigation of the hydraulic conductivity parameters of silty soils was performed. In the first phase, double-ring infiltrometer tests were used to measure infiltration rates in-situ at two sites in the Piedmont physiographic province of Georgia. The efficacy of predicting saturated hydraulic conductivity for Piedmont soils via published soil surveys from the National Resource Conservation Service and pedotransfer functions was then investigated. Work focused on the development of a consistent test methodology for soils (sandy, to silts and clays) in the Piedmont, and the final test method utilized being the constant head test, using a double-ring infiltrometer with Mariotte tubes to maintain the head.
In the second phase of the investigation, laboratory based measurements of the saturated hydraulic conductivity of binary mixtures of fine sand and nonplastic silt were performed to investigate the effects of particle mixtures on hydraulic conductivity. The materials used were ASTM 100/200 sand and Sil-Co-Sil 40 non-plastic silt, chosen based on the ratio of the mean particle diameters. Significant effort was invested in the development and comparison of methodologies to produce uniform specimens of the binary mixtures for hydraulic conductivity testing, with the final being modified dry tubing. Two fixed densities were used to investigate the effects of particle packing on the hydraulic conductivity of binary mixtures, with critical fines contents chosen to ensure the finer particles primarily filled the pore volume of the coarse particles. Incremental fines contents, by mass, up to this theoretical fines content were tested. The measured saturated hydraulic conductivity was evaluated in terms of fines content, global and intergranular void ratio, and confining stress. Models for predicting extreme void ratios and saturated hydraulic conductivity of binary mixtures were also investigated.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/53023
Date12 January 2015
CreatorsPettyjohn, William Randall
ContributorsBurns, Susan E.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0019 seconds