Concrete, the major construction material used in the civil industry worldwide, displays remarkable performance and economic benefits. Yet, it also presents a huge environmental impact producing about 7% of the global carbon dioxide (CO2). Given the rise of global warming concerns, studies have been focusing on alternatives to reduce the amount of Portland cement (PC), which is the least sustainable ingredient of the mixture, for example by adopting particle packing model (PPM) techniques. Although a promising alternative, there is currently a lack of studies regarding the efficiently use of PPMs to reduce PC without compromising the fresh and hardened properties of the material. This work appraises the influence of PPMs and advanced mix-design techniques on the fresh (rheological behaviour) and hardened (compressive strength, modulus of elasticity, porosity, and permeability) state behaviours of systems with reduced amount of PC, the so-called low cement content (LCC) concrete. Results show that is possible to produce eco-efficient concrete maintaining and/or enhancing fresh and hardened properties of the material. Nevertheless, further durability and long-term behaviour must be performed on LCC systems.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/38109 |
Date | 12 September 2018 |
Creators | Tagliaferri de Grazia, Mayra |
Contributors | Sanchez, Leandro |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0684 seconds