Return to search

Regulation of the Fanconi Anemia Pathway by Deubiquitination

Fanconi anemia (FA) is a rare genetic disease characterized by bone marrow failure and cancer predisposition. Cell lines derived from FA patient exhibit chromosomal instability and sensitivity to DNA interstand crosslinkers (ICLs) like mitomycin (MMC). The key event in Fanconi anemia pathway is the regulated ubiquitination and deubiquitination of FANCD2 and FANCI. Upon DNA damage, FANCD2 and FANCI are monoubiquitinated by FA core complex. They then move into the chromatin and serve as the landing site for downstream players, like FANCP/SLX4 and FAN1. USP1, the deubiquitinating enzyme (DUB), removes ubiquitin from FANCD-Ub/FANCI-Ub, and this step is required for the integrity of FA pathway. This dissertation addresses how USP1 is regulated in the cell. In Chapter 2, we discovered UAF1/WDR48 as a critical binding partner for USP1, by activating its enzymatic activity in vitro and in vivo. We then generated DT40 knockout cell lines of USP1 and UAF1. We showed that USP1/UAF1 complex is functionally required for homologous recombination (HR). Interestingly, PCNA-Ub is also a substrate for USP1. We discovered that hELG1, through its binding to USP1/UAF1 complex, regulates the deubiquitination of PCNA-Ub and translesion DNA synthesis (TLS). Then in Chapter 3, we discovered a tandem repeat of SUMO-like domains (SLD1 and SLD2) in the C terminus of UAF1. SLD2 binds directly to a SUMO-like domain-interacting motif (SIM) on FANCI. Deletion of the SLD2 of UAF1 or mutation of the SIM of FANCI disrupts UAF1/FANCI binding and inhibits FANCD2 deubiquitination. The SLD2 sequence of UAF1 also binds to a SIM on hELG1, and targets the USP1/UAF1 complex to its PCNA-Ub substrate. We proposed the regulated targeting of USP1/UAF1 to its DNA repair substrates, FANCD2-Ub and PCNA-Ub, by SLD-SIM interactions coordinates HR and TLS. Originating from USP1/UAF1 complex, we worked out a general mechanism of DUB regulation by WD40 proteins, which involved in two more DUBs, USP12 and USP46 (discussed in Chapter 4 and Appendix A). Lastly in Chapter 5, through bioinformatic analysis we identified a series of novel proteins containing ubiquitin-binding zinc fingers (UBZ). We then focused on SNM1A and FAAP20/C1orf86, and characterized their function in DNA crosslink repair.

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/10288403
Date January 2012
CreatorsYang, Kailin
ContributorsD’Andrea, Alan D., Finley, Daniel J.
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsclosed access

Page generated in 0.0024 seconds