L’habitat sain est le thème central des réflexions contemporaines du domaine du bâtiment élargies à l’environnement. Il comporte des préoccupations notables en matière de santé, de consommation énergétique (la ventilation, le chauffage, la climatisation et l’eau chaude), d’impacts environnementaux et de durabilité des matériaux de construction. Le choix préliminaire des matériaux utilisés pour la construction joue un rôle important dans la réussite d’un projet HQE (Haute Qualité Environnementale). Dans ce contexte, la problématique de prévision des champs de température et d’humidité demeure essentielle à l’intérieur des matériaux poreux de construction, où les matériaux biosourcés font l'objet d'un fort intérêt vu leurs qualités environnementales. Les matériaux biosourcés, étant hygroscopiques, ont tendance à absorber ou à restituer l’humidité, ce qui génère respectivement un gonflement ou un retrait. A l’échelle microscopique, l’humidité prend place soit par l’absorption de l’eau liée par les fibres, soit par l’existence d’eau libre dans les pores. Cette complexité des phénomènes microscopiques dans les matériaux biosourcés mène à une forte interaction entre l’aspect mécanique et les aspects de transferts de masse et de chaleur. L’existence de ce couplage est susceptible de modifier sensiblement les performances thermiques du bâtiment, et même sa durabilité. L’objectif visé par ce travail de thèse est l’étude et l’analyse microscopique du comportement hygrique des matériaux poreux de construction. L’aspect mécanique couplé à l’aspect hygrique est abordé en prenant en considération les déformations locales de gonflement - retrait, et leur impact sur l’hystérésis de teneur en eau. La maîtrise de ce couplage est primordiale tant sur le plan de la prédiction de la qualité des ambiances habitables que sur l’évaluation de la durabilité de ces structures. Le projet de thèse consiste à travailler à la fois sur les aspects modélisation, caractérisation et mesure des transferts hygriques. La quantification de ces phénomènes est réalisée à travers des campagnes de mesures expérimentales basées sur des techniques d’imagerie 3D (micro-tomographie aux rayons X). Le recours à la diffraction aux rayons X (DRX), à la corrélation d’images volumique, ainsi qu’à la résonance magnétique nucléaire (RMN) permet d’avoir une meilleure compréhension des échanges entre la matrice solide et l’eau liée et/ou libre. Tous ces travaux ont mené à une meilleure caractérisation de la morphologie du bois d’épicéa à l’échelle microscopique, ainsi qu’à une meilleure estimation des diverses variations dimensionnelles (gonflement) à l’échelle des parois cellulaires et de leurs constituants chimiques. Les résultats numériques obtenus sur la structure réelle 3D du matériau ont été couplés aux mesures expérimentales à travers la corrélation d’images volumiques (micro-tomographie aux rayons X) afin d’identifier les propriétés intrinsèques des phénomènes et du matériau. Ces travaux de thèse constitueront une base scientifique permettant une meilleure modélisation du couplage mécanique avec les transferts de chaleur et de masse dans les matériaux biosourcés. / Healthy living is a main contemporary concern of the construction field, extended to the environment. It has significant concerns about health, energy consumption, environmental impact and sustainability of building materials. The preliminary selection of materials used for construction plays an important role in the success of high environmental quality projects. In this context, it remains essential to predict the temperature and humidity fields inside porous building materials, where bio-based materials are subject to a strong interest due to their environmental qualities.As bio-based materials are hygroscopic, they tend to absorb or restore moisture, which respectively generates swelling or shrinkage. At the microscopic scale, moisture takes place either by absorption of bound water by the fibers, or by the existence of free water in the pores. The complexity of microscopic phenomena in bio-based materials will lead to strong interactions between the mechanical aspect on one side and heat and mass transfers’ aspects on the other side. The existence of this coupling may significantly alter the building's thermal performance, as well as its durability.The objective of this thesis work is to study the microscopic hygric behavior of porous building materials. The mechanical aspect coupled to the hygric one is studied, taking into consideration the local swelling and shrinkage strains, and their impact on the hysteresis phenomenon. Understanding this coupling is very important in order to improve the quality of habitat and evaluate the durability of these structures.The PhD project consists on working on all aspects, modeling, characterization and measurement of hygric transfers. Quantification of these phenomena is achieved through experimental campaigns based on 3D imaging techniques (X-ray micro-tomography). The use of X-ray diffraction (XRD), digital volume correlation, as well as nuclear magnetic resonance (NMR) allows a better understanding of the interactions between the solid matrix and bound and/or free water. The corresponding results have led to a microscopic morphological characterization of spruce wood, as well as to a better estimation of the various dimensional variations of the cell walls, and their chemical components.The numerical results achieved on the real 3D structure of the material have been coupled to the experimental ones, using digital volume correlation technique (X-ray tomography), in order to identify the intrinsic properties of the material.These thesis works provide a scientific basis allowing the improvement of modeling of the mechanical coupling with heat and mass transfers in bio-based materials.
Identifer | oai:union.ndltd.org:theses.fr/2017SACLN051 |
Date | 27 November 2017 |
Creators | El Hachem, Chady |
Contributors | Université Paris-Saclay (ComUE), Bennacer, Rachid |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds