Molecular biologists have been observing interactions between messenger RNA (mRNA) molecules and other non-coding RNA molecules for quite some time. Here I revisit some of the classical hybridizations between the 16S ribosomal RNA (rRNA) and mRNA during initiation, as well as investigate the interactions between small interfering RNA (siRNA) molecules and mRNA. In reviewing rRNA-mRNA interactions, I observed that the majority of both bacterial and eukaryote genes can bind at the start codon. This novel result lead to a method for improving genome annotation as well as a new theory of translation initiation. The examination of siRNA-mRNA interactions lead to new criteria for predicting an siRNA's efficacy.
Identifer | oai:union.ndltd.org:NCSU/oai:NCSU:etd-10202006-155443 |
Date | 02 November 2006 |
Creators | Starmer, Joshua Mr. |
Contributors | Donald Bitzer, Anne Stomp, Mladen Vouk |
Publisher | NCSU |
Source Sets | North Carolina State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://www.lib.ncsu.edu/theses/available/etd-10202006-155443/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dis sertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to NC State University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0021 seconds