Le travail de thèse a consisté à développer des voies originales de microfabrication pour laconception d’électrodes qui pourront être utilisées dans un biocapteur basé sur unetransduction électrochimique. Une des perspectives étant de pouvoir intégrer ce type decapteur dans un microsystème analytique à base microfluidique, nous avons fait le choix duverre comme matériau de base. Par ailleurs, nous avons privilégié les technologies de« lithographie douce » au détriment de voies classiques telles que la photolithographie afin derendre inutile l’accès à des salles à environnement contrôlé ou l’utilisation d’appareillagessophistiqués.Lors de ce travail, nous avons plus particulièrement travaillé sur le développement deméthodes combinant la technique de microtamponnage et la métallisation chimique de typeautocatalytique (electroless). Cette métallisation nécessitant des surfaces catalytiques pourfaire croître la couche métallique, nous avons développé des méthodes de traitements desurface afin de rendre le substrat de base catalytique sur toute sa surface. La technique demicrotamponnage a ensuite été utilisée afin de passiver les zones où la métallisation n’est pasdésirée et cela a mené à des microstructures métalliques en surface du verre présentant peu oupas de défauts. Notre approche nous a conduit à utiliser plusieurs types de catalyseurs sous laforme de nanoparticules métalliques à base d’argent, d’or ou de palladium et nous avonsdiscuté les différences entre les méthodes basées sur ces différents catalyseurs.Une autre voie a consisté à graver de façon localisée des couches minces métalliquesuniformes en protégeant les zones ne devant pas être gravées par la technique demicrotamponnage. Ceci a permis le développement de deux voies originales demicrostructuration sur couches minces métalliques uniformes (d’une part le pelage sélectif etd’autre part le procédé à double inversion).Dans l’ensemble de nos travaux, des caractérisations d’extrême surface par les techniquesSEM, AFM, ToF-SIMS, XPS et de mouillabilité ont été menées afin d’optimiser ledéveloppement des différents procédés. / This thesis work consisted in the development of original strategy for the microfabrication ofelectrodes which could be used in a biosensor as an electrochemical transducer. One of theprospects of this work is to insert this type of sensor into a microfluidic chip, We have madethe choice of using glass as a substrate. Moreover, we have favoured soft lithographictechnologies at the expense of conventional strategy like photolithography.In this work, we mainly worked on the development of methods which combines microcontact printing and autocatalytic metallisation (electroless). As this type of metallisationneeds catalytic surfaces to grow the metallic layer, we developed surface treatments methodsto make the surface of the substrate catalytic for the metallisation. To follow, the microcontact printing technique has been used to passivate areas where metallisation should notoccur and this leads to metallic microstructure with very few defects. Our approach leads uson the use of different catalyst like gold, silver or palladium nanoparticles and we havediscussed differences between the different methods.Another strategy consisted in the selective etching of thin metallic layer. Areas not to be etchare protected by the micro contact printing technique. This leads to the development of twooriginal strategies of microfabrication on thin metallic layer.In the whole work, extreme surface characterisation like SEM, AFM, ToF-SIMS, XPS andwettability have been carried out in order to optimize the development of the differentmethods.
Identifer | oai:union.ndltd.org:theses.fr/2010LYO10205 |
Date | 15 October 2010 |
Creators | Cotte, Stéphane |
Contributors | Lyon 1, Léonard, Didier, Crétier, Gérard |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, StillImage |
Page generated in 0.0016 seconds