Return to search

High-Intensity Interval Training Improves Insulin Sensitivity Independent of Adipose Tissue Inflammation

<p>Obesity is associated with a state of chronic, low-grade inflammation that contributes to the development of insulin resistance. Exercise is known to improve insulin resistance, and emerging evidence suggests that exercise also reduces adipose tissue inflammation. However, the relationship between exercise and inflammation has not been separated from the confounding effect of weight loss. The objectives of this study were to 1) determine whether high-intensity interval training (HIT) improves insulin sensitivity in obese mice independent of weight loss and 2) assess the effect of exercise on the relationship between adipose tissue inflammation and insulin sensitivity.</p> <p>C57BL/6 mice were assigned to one of three groups: a control, chow diet (Chow), 12 weeks of high-fat diet with no exercise (HFD Sed), or 6 weeks of high-fat diet feeding followed by an additional 6 weeks of HIT (HFD Ex). In HFD-induced obese mice, HIT had no effect on body mass, epididymal fat mass, adiposity, or adipocyte size. HIT also did not alter adipose tissue inflammation, macrophage infiltration, or adipose tissue macrophage polarization/inflammation. Nevertheless, when compared to HFD Sed mice, HIT resulted in lower fasting insulin levels and improved glucose tolerance and insulin sensitivity.</p> <p>In conclusion, these finding demonstrate that HIT improves whole-body insulin sensitivity and glucose homeostasis independent of changes in body mass or adipose tissue inflammation. The benefits of exercise in obese individuals are obvious; however, the mechanisms underlying the improvements in insulin sensitivity observed following chronic, HIT remain to be elucidated.</p> / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/10395
Date10 1900
CreatorsSikkema, Sarah R.
ContributorsSteinberg, Gregory, Sandeep Raha, Ali Ashkar, Sandeep Raha, Ali Ashkar, Medical Sciences
Source SetsMcMaster University
Detected LanguageEnglish
Typethesis

Page generated in 0.0022 seconds