Return to search

Hemicellulose Based Biodegradable Film Production

Xylan was extracted from cotton waste, characterized by DSC and TGA analysis and used in biodegradable film production. Pure cotton waste xylan did not form film. The presence of an unknown compound, as an impurity, yielded composite films. The unknown compound was determined as a phenolic compound, and most probably lignin, by using DSC and TGA analysis and Folin-Ciocalteau method. The effects of xylan concentration of the film forming solutions, glycerol (plasticizer) and gluten additions on thickness, mechanical properties, solubility, water vapor transfer rate, color and microstructure of the films were investigated.

Films were formed within the concentration range of 8-14%. Below 8%, film forming solutions did not produce films, whereas xylan concentrations above 14% was not used because of high viscosity problems. The average tensile strength, strain at break, water vapor transfer rate and water solubility of the cotton waste xylan films were determined as about 1.3 MPa, 10%, 250 g/m2.24h and 99%, respectively. The addition of glycerol as the plasticizer resulted in a decrease in the tensile strength and an increase in strain at break. The change in water solubility due to the addition of glycerol was very small. In addition, water vapor transfer rate and the deviation of the color from the reference color for the plasticized films were found to be higher than the unplasticized films.

The effect of addition of wheat gluten in cotton waste xylan film forming solutions on film formation was investigated at different concentration ratios. However, the incorporation of wheat gluten worsen the film quality.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12605940/index.pdf
Date01 February 2005
CreatorsGoksu, Emel Iraz
ContributorsBakir, Ufuk
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0028 seconds