Return to search

Research on the pollutants of catalytic oxidation for gasoline and emission reduction of bio-diesel fuel

How effective would the implementation of biodiesel fuel in reducing emissions caused by automobiles and motorcycles in the densely populated regions? The goal of this research is targeted at determining the most proficient methods in depleting the harmful substances emitted from refueling stations and the efficiency of biodiesel fuel in emissions reduction.
The initial stages in the research involved the use of aluminum oxide and molecular sieve, which would act as active metals for copper and manganese. Impregnation and solgel method of catalytic production were utilized with 12 sets of oxidized copper, and molecular sieve catalysts, totaling at 24 sets. With results from the primary testing, initial selection of impregnation production methods based on its conversion rate had a carrying capacity of 20% CuMn/ oxidized copper catalyst (Cu: Mn ratio at 1:1), and a 20% CuMn/molecular sieve catalyst (Cu: Mn ratio of 1:1) with the solgel method. The two exogenous tests were not only found to be the most efficient rate of conversion as base standards, but were also found to be the most competent method to date.
Approximate calculations from the two catalytic testing showed that CuMn/oxidized copper catalyst conversion are less affected by variation in concentration density. Furthermore, the CuMn/oxidized copper and CuMn/molecular sieve catalysts faced a positive conversion rate when reacted with a decreased space velocity, but leveled off once it reached a specific level. Moreover, the two catalysts also faced an increased conversion rate when conducted with an increase in oxygen concentration, and reached maximized efficiency at 30% concentration.
Secondary stage of the research focuses on operational efficiency of the biodiesel fuel, with emphasis on its pollutant emissions and economical standpoint. The initial testing concluded that not only did the fuel has a lower cost in reducing greenhouse gas emission than alternative energy sources, but it can also reduce SOx emissions by 7,200kg, 23 metric tons of PM10, and 262,400 metric tons of CO2 annually when applied with B2 fuel.
Pollution reduction assessment indicated that if all diesel powered automobiles utilized the B10 biodiesel fuel, then it¡¦s estimated that it would have an annual THC reduction rate of 2.83x102 metric tons, 1.98x103 tons in COs, 4.56x103 in NOx, and 5.66x101 metric tons in PM gases. Furthermore, if the B20 fuel cells were incorporated, then it¡¦s estimated to have an annual reduction rate of 2.83x102 metric tons in THC, 2.83x103 metric tons of CO, 1.14x103 metric tons of NOx, and 1.16x102 metric tons of PM.
Results from the beta stage testing indicated that if B10 fuel were incorporated into all diesel powered automobiles, with a budget of NT$1million would result in an annual reduction rate of 0.57 metric tons of THC, 9.12 metric tons of NOx, 0.11 metric tons of PM and a totaled 9.8 metric tons of reduction. Furthermore, if B20 were implemented, again with NT$1 million budget, we would expect to see annual reductions of 0.06 metric tons of THC, 0.25 metric tons of NOx, 2.51 tons of PM gases, totaling at 2.81 metric tons of reductions.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0112110-144117
Date12 January 2010
CreatorsYang, Hung-wen
ContributorsJie-Chung Lou, Hsin-Yi Lin, Chung-Bang Chen, Chih-Huang Weng, Shui-Jen Chen
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0112110-144117
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0642 seconds