Return to search

MODELING AND ANALYSIS OF INTERACTIONS BETWEEN A PULSATILE PNEUMATIC VENTRICULAR ASSIST DEVICE AND THE LEFT VENTRICLE

The use of a ventricular assist device (VAD) is a promising option for the treatment of end-stage heart failure. In many cases VADs provide not only temporary support, but contribute to the recovery of the native ventricle. Many studies have reported incidences where the native ventricle has recovered function, leading to device explantation and eliminating the need for heart transplantation. Despite strong interest in the subject for many years, the determinants of the recovery process are poorly understood and number of patients successfully weaned from chronic support remains low.
A mathematical model was developed to gain an understanding of the complex mechanical interactions between a pneumatic, pulsatile VAD and the left ventricle. The VAD model was verified in-vitro using a mock circulatory loop. Over a wide range of experimental conditions, it correctly described observed dynamic behaviors and was accurate in predicting both VAD stroke volume and fill-to-empty rate within 6% error. This validated VAD model was coupled to a simple, lumped parameter cardiovascular model. The coupled model qualitatively reproduced the temporal patterns of various hemodynamic variables observed in clinical data. A concept of VAD characteristic frequency (fc) was developed to facilitate the analysis of VAD-ventricle synchrony. Characteristic frequency, defined as VAD rate in the absence of ventricular contraction, was essentially independent of cardiovascular parameters. For a given set of VAD parameters, synchrony was found to occur over a range of native heart rates. While the lower bound was determined by fc alone, the upper bound was a function of various cardiovascular parameters (e.g., left ventricular contractility, EMAX and systemic vascular resistance, SVR). In the case of synchronous behavior, the VAD and native heart have matched rates and counter-pulse, resulting in reduced ventricular loading. A decrease in EMAX or an increase in SVR increases asynchrony, resulting in frequent occurrences of co-pulsed beats (i.e., high ventricular loading).
In conclusion, we found that VAD-ventricle synchrony is determined by a complex interaction between VAD and cardiovascular parameters. Our model-based analysis of VAD-ventricle interaction may be useful for optimizing the VAD operation, characterizing native ventricular contractility, and better understanding of the recovery process.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-11092004-173501
Date28 January 2005
CreatorsHunsberger, Andrew Zygmund
ContributorsJohn Gorcsan, James F. Antaki, Harvey Borovetz, Sanjeev Shroff
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-11092004-173501/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0018 seconds