Return to search

Adsorption and Separation of Carbon Dioxide for Biomethane Production : The Use of Activated Carbons / Adsorption et Séparation du dioxyde de Carbone pour la Production du Biométhane : L’utilisation des Charbons Actifs

Le biométhane est une source d'énergie verte qui, de part son coût et son faible impact environnemental, peut être considéré comme une alternative au gaz naturel et au diesel. La production d'énergie primaire par l'Union Européenne, à partir du biométhane, a été multipliée par 23 en cinq ans (2011-2016), ce qui rend nécessaire et urgent la recherche de nouvelles solutions performantes pour l’épuration du biogaz, notamment la séparation du dioxyde de carbone (CO2) du méthane (CH4).Dans ce contexte, l’objectif de ce travail doctoral porte sur la détermination des indicateurs de performances (capacité d’adsoprtion, sélectivité) de charbons actifs (CAs) dans le contexte de la séparation méthane/dioxyde de carbone pour la production de biométhane. A cette fin, les isothermes d'adsorption de CH4 et CO2 ont été déterminées à partir d’un dispositif manométrique d’adsorption. Les mesures ont été effectuées à des températures de 303 et 323 K pour des pressions variant de 0.1 à 3 MPa. Dans un premier temps, l’étude a porté sur 5 échantillons commerciaux de CA différents. Les résultats montrent une corrélation entre la surface spécifique et la quantité de dioxyde de carbone adsorbée. En outre, le volume microporeux a un impact significatif lors des processus d'adsorption du CO2 tandis que le volume des mésopores n'a pas d’effet direct.Par ailleurs, l'étude complémentaire d'isothermes d'adsorption du CH4 et du CO2 purs à l’aide de trois charbons actifs, issus de noyaux d’olive, activés par différentes méthodes de synthèse, révèle que la méthode d'activation est déterminante pour modifier les propriétés chimiques et structurales des charbons actifs et donc accroitre leurs propriétés d'adsorption.En outre, la sélectivité des CAs commerciaux pour la séparation CH4/ CO2 a été calculée à partir des isothermes d'adsorption du mélange équimolaire CH4/ CO2 à une température de 303 K et pour des pressions jusqu'à une pression de 3 MPa. Les résultats obtenus montrent qu’une surface spécifique élevée (< 1500 m2 g-1) facilite l'adsorption du CO2 mais réduit le facteur de sélectivité. En parallèle, une forte porosité conduit à une séparation moins efficace des deux gaz alors que la présence de groupes basiques en surface favorise les phénomènes d’adsorption du CO2.L'ensemble des résultats montre que les charbons actifs, étudiés dans ce travail de recherche, possèdent des propriétés d'adsorption comparables à celles des charbons actifs commerciaux et sont des matériaux compétitifs pour l'épuration du biogaz. / Biomethane is a proven source of clean energy, it is one of the most cost-effective and environment-friendly substitute for natural gas and diesel. The European Union primary energy production from biomethane has folded by ~23 times in a 5 years time period (2011-2016) making necessary to find new and improved solutions for the separation of methane (CH4) and carbon dioxide (CO2), main components of biogas. In this context, the objective of this doctoral thesis is the determination of performance indicators such as the adsorption capacity and selectivity of activated carbons (ACs) for the CH4/ CO2 separation. This work focuses on the adsorption properties of activated carbons for the methane/carbon dioxide separation. To this end, CH4 and CO2 pure gas experimental adsorption isotherms of activated carbons were obtained on a pressure range of 0.1 to 3 MPa) and temperatures ranging from 303 to 323 K. The first part of this thesis project consisted in the analysis of the CH4 and CO2 pure gas adsorption properties of 5 commercial activated carbons Using a set of five commercial activated carbons a linear relationship between the adsorbent surface area and the CO2 adsorption capacity was determined. The micropore volume also showed a direct influence on the adsorption capacity. The second part of this work consisted in the study of the carbon dioxide and methane adsorption behavior of biomass-based activated carbons. Using a series of 3 ACs that had been obtained from olive stones by different activation methods, the activation technique proved to be of mayor importance as it determines the textural and chemical properties of the adsorbent and thus its gas adsorption capacity.Lastly, the CH4/CO2 adsorption selectivity of the 5 commercial activated carbons was calculated from the equimolar mixture adsorption isotherms. The selectivity factor was proven to be dependent on the sum of textural and chemical properties of the samples. Although, activated carbons with high average pore sizes and surface areas depicted higher adsorbed quantities it was on detriment of their selectivity. The selectivity was found to be better for the activated carbon showing an intermediate surface area and a narrow pore size distribution. In addition, the presence of sulfur functionalities was also found to improve the adsorption selectivity. Overall, this work shows that activated carbons are competitive materials for the upgrading of biogas, displaying adsorption properties comparable to those of other commercially available materials.

Identiferoai:union.ndltd.org:theses.fr/2019PAUU3012
Date06 September 2019
CreatorsPeredo Mancilla, Joselin Deneb
ContributorsPau, Bessières, David, Hort, Cécile
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds