Bioinformatics, as a field, rapidly develops and such development requires the design ofalgorithms and software. RNA-seq provides robust information on RNAs, both alreadyknown and new, hence the increased study of the RNA. Alignment is an important step indownstream analyses and the ability to map reads across splice junctions is a requirement ofan aligner to be suitable for mapping RNA-seq reads. Therefore, the necessity for a standardsplice-aware aligner. STAR, Rsubread and HISAT2 have not been singly studied for thepurpose of benchmarking one of them as a standard aligner for spliced RNA-seq reads. Thisstudy compared these aligners, found to be sensitive to splice sites, with regards to theirsensitivity to splice sites, performance with default parameter settings and the resource usageduring the alignment process. The aligners were matched with featureCounts. The resultsshow that STAR and Rsubread outperform HISAT2 in the aspects of sensitivity and defaultparameter settings. Rsubread was more sensitive to splice junctions than STAR butunderperformed with featureCounts. STAR had a consistent performance, with more demandon the memory and time resource, but showed it could be more sensitive with real data.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:his-18513 |
Date | January 2020 |
Creators | Oguchi, Chizoba |
Publisher | Högskolan i Skövde, Institutionen för biovetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds