Return to search

Drivers of variation in the migration and foraging strategies of pelagic seabirds

The ability to move and forage efficiently plays a major role in determining the fate of individuals, and has important implications for population dynamics and ecosystem functioning. Migration is a particular type of movement strategy, whereby animals may travel remarkable distances in order to take advantage of seasonality in resource availability or to avoid arduous winter conditions; however, this can be at a cost in terms of increased mortality. Indeed, anthropogenic threats in non-breeding areas are a major cause of population declines and a better understanding of non-breeding spatial ecology is required in order to advance both ecological theory and conservation management. The recent development of animal tracking technologies, in particular light-based geolocation, has made it possible to track large-scale and long-term movements; however, there are still gaps in our knowledge, such as the links between migratory and reproductive performance, connectivity among populations and the ontogeny of migration strategies. In this thesis, I utilise multi-species and longitudinal datasets from albatrosses and petrels, some of the most mobile species on Earth, to explore the drivers of variation in movements, habitat use and foraging behaviour, and the implications for life history and conservation. In Chapter 1, I provide an overview of the key topics of this thesis. In Chapter 2, I provide quantitative recommendations of minimum sample sizes needed to track pelagic seabird migrations, using data from 10 species. In Chapter 3, I examine between- and within-population differences in the habitat preferences and distributions of albatrosses, including the relative roles of habitat specialization and intra-specific competition. In Chapter 4, I investigate the year-round movement and foraging strategies of petrels living in nutrient-poor environments. In Chapter 5, I examine potential links between foraging behaviour during the non-breeding season and reproductive senescence. In Chapter 6, I explore the ontogeny of foraging behaviour and foraging site fidelity in young albatrosses, shedding light on their “lost years” at sea. Finally, I conclude with a general discussion summarizing main findings and suggesting future work. Overall, my results highlight the complex relationships among individual traits, the environment, movements and foraging behaviour, and population dynamics across the lifespan of individuals, with implications for the conservation of this highly threatened group of species.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:725546
Date January 2017
CreatorsClay, Thomas Anthony
ContributorsManica, Andrea ; Phillips, Richard
PublisherUniversity of Cambridge
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.repository.cam.ac.uk/handle/1810/267809

Page generated in 0.0023 seconds