Return to search

Engineered mRNA regulation using an inducible protein-RNA aptamer interaction / Engineered mRibonucleic acid regulation using an inducible protein-Ribonucleic acid aptamer interaction

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biological Engineering, 2012. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 114-131). / The importance and pervasiveness of naturally occurring regulation of RNA function in biology is increasingly being recognized. A common regulatory mechanism uses inducible protein-RNA interactions to shape diverse aspects of cellular RNA fate. Recapitulating this using a novel set of protein-RNA interactions is appealing given the potential to subsequently modulate RNA biology in a manner decoupled from normal cellular physiology. We describe a ligand-responsive protein-RNA interaction module that can be used to target a specific RNA for subsequent regulation. Using the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) method, RNA aptamers binding to the bacterial Tet Repressor protein (TetR) with low- to sub- nanomolar affinities were identified. This interaction is reversibly controlled by tetracycline in a manner analogous to the interaction of TetR with its cognate DNA operator. Aptamer minimization and mutational analyses support a functional role for conserved sequence and structural motifs in TetR binding. We illustrate the utility of this chemically-inducible RNA-protein interaction to directly regulate translation in both a prokaryotic and eukaryotic organism. By genetically encoding TetR-binding RNA elements into the 5'-untranslated region (5'-UTR) of a given mRNA, translation of a downstream coding sequence is directly controlled by TetR and tetracycline analogs. In endogenous and synthetic 5'-UTR contexts, this modular system efficiently regulates the expression of multiple target genes, and is sufficiently stringent to distinguish functional from nonfunctional RNA-TetR interactions. We also demonstrate engineering this TetR-aptamer module to regulate subcellular mRNA localization. This is efficiently achieved by fusing TetR to proteins natively involved in localizing endogenous transcripts, and genetically encoding TetR-binding RNA aptamers into the target transcript. Using this platform, we achieve tetracycline-regulated enhancement of target transcript subcellular localization. We also systematically examine some rules for successfully forward engineering this RNA localization system. Altogether, these results define and validate an inducible protein-RNA interaction module that incorporates desirable aspects of a ubiquitous mechanism for regulating RNA function in Nature and that can be used as a foundation for functionally and reversibly controlling multiple fates of RNA in cells. / by Brian J. Belmont. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/78136
Date January 2012
CreatorsBelmont, Brian J. (Brian Joshua)
ContributorsJacquin C. Niles., Massachusetts Institute of Technology. Dept. of Biological Engineering., Massachusetts Institute of Technology. Dept. of Biological Engineering.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format131 p., application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0115 seconds