Return to search

Some aspects of natural products chemistry

In part I of this thesis are described some studies toward the total synthesis of tetracycline.
Attempts to transform the key aromatic compounds, terrarubein and 6-methylpretetramid into actual or hypothetical biosynthetic intermediates, failed to yield useful non-aromatic products. However, several of the transformations further along the route have been achieved. Thus, the conversion of 12a-deoxy-5a,6-anhydrotetracycline into 7-chloro-5a,6-anhydrotetracycline was successfully carried out.
In a different approach it was attempted to convert the synthetic tetracycline derivative 7-chloro-4-dedimethylamino-5a,6-anhydrotetracycline to 7-chloro-5a,6-anhydrotetracycline via a series of bromination-aminatipn experiments. Chromatographic evidence is presented for the formation, in trace amounts, of 7-chloro-5a,6-anhydro-4-epi-tetracycline.
Part II is concerned with the study of the possible precursor activity of triacetic acid lactone, a potential polyketomethylene chain intermediate in the biosynthesis of aromatic compounds. (3,5-¹⁴ C) Triacetic acid lactone was fed to P. patulum and labelled griseofulvin was isolated and degraded. It was found that radioactivity is incorporated into griseofulvin a non-specific way. In one strain of the mould used two new metabolites were found as a result of the addition of triacetic acid lactone. Addition of triacetic acid lactone to the mould also causes an unexplained enhancement of metabolite formation. / Science, Faculty of / Chemistry, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/37686
Date January 1965
CreatorsYalpani, Mohamed
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0018 seconds