Return to search

Massively parallel combinatorial microbiology

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biological Engineering, May, 2020 / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 203-216). / Reductionist biology of the 20th century rooted pure culture methods and antibiotics as pillars of humankind's interaction with microbiology, igniting a revolution in medicine and biotechnology. The revolution was not without cost. By overlooking complex biological interactions, it introduced new problems--from the sharp rise in immune disorders to the antibiotic resistance crisis--that 21st century tools must address. While 'omics methods have fundamentally expanded our understanding of biological complexity, we lack a generalized method for measuring how the parts of a complex system, such as the individual strains of a microbial community, interact with each other. In this thesis, I present kChip, a new platform for constructing massively parallel combinatorial arrays of these parts in order to measure their interactions directly. I describe how kChip has been used to reveal patterns in microbial community assembly, unearth minimal microbial combinations with desirable functions, and screen for compounds that potentiate antibiotic activity. I demonstrate how kChip can advance the development of new technologies like microbial consortia and combinatorial drug therapies. / by Jared Scott Kehe. / Ph. D. / Ph.D. Massachusetts Institute of Technology, Department of Biological Engineering

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/127886
Date January 2020
CreatorsKehe, Jared Scott.
ContributorsPaul C. Blainey., Massachusetts Institute of Technology. Department of Biological Engineering., Massachusetts Institute of Technology. Department of Biological Engineering
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format216 pages, application/pdf
RightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0019 seconds