Return to search

Microbial Phosphorus Removal in Waste Stabilisation Pond Wastewater Treatment Systems

<p>Waste Stabilisation Ponds (WSPs) are characterised by low phosphorus (P) removal capacity. Heterotrophic bacteria are principal microbial agents in WSPs in addition to algae. As treatment proceeds in WSPs, algal growth increases and pH rises, this has lead to believe that P removal is mainly through sedimentation as organic P algal biomass and precipitation as inorganic P. In activated sludge treatment plants (AS), microbial P removal has been improved and is termed as enhanced biological phosphorus removal. There was a need to establish whether it was possible to enhance P removal in WSPs. A performance assessment of pond system at the University of Dare s Salaam (UDSM), Tanzania, has shown that 90% of the P removed was in the primary pond (facultative) and the rest in the maturation pond (aerobic).</p><p>In these studies, a pure strain A. hydrophyla was isolated from an activated sludge wastewater treatment plant in Sweden. This plant has a train that functions with enhanced biological phosphorus removal. The strain was tested for P uptake in minimal media supplemented with glucose, succinate or acetate, grown aerobically and anaerobically/aerobically. This strain was able to take up P without having been subjected to the anaerobic phase. It was observed that P uptake was enhanced after the anaerobic phase with media supplemented with glucose, but not with succinate or acetate. Phosphorus uptake repeatedly followed the bacterial growth pattern with correlation coefficients of more than 95%. Therefore P removal has a direct correlation with bacterial growth.</p><p>Two isolates Acinetobacter sp. (isolated from the primary facultative pond) and E .coli (isolated from the maturation pond) were obtained from a tropical WSP treatment system at the UDSM. They were subjected to aerobic P uptake experiment similar to those of A.hydrophyla. The uptake per unit absorbance of bacterial growth was found to be comparable to that of A.hydrophyla, isolated from AS. These results showed that heterotrophic activity is important in WSPs. It is possible to enhance P removal in these systems by designing the primary ponds for maximum heterotrophic activity and probably enrichment.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-3876
Date January 2006
CreatorsMbwele, Lydia Ambakisye
PublisherKTH, School of Biotechnology (BIO), Stockholm : Bioteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, text

Page generated in 0.0021 seconds