Return to search

Removal of Total Organic Carbon and Emerging Contaminants in an Advanced Water Treatment process using Ozone-BAC-GAC

Indirect potable reuse has been practiced with the potential to enhance sustainability of water resources if planned accordingly. Depending on the pretreatment implemented for potable reuse, emerging contaminants; such as pharmaceuticals, personal care products, industrial solvents, bacterial/viral pathogens, and disinfection byproducts, might be present in source water and difficult to remove via various water treatment technologies. Low molecular weight organic compounds are especially challenging to remove and may require treatment optimization. The overarching purpose of this study was to demonstrate the feasibility of a carbon-based advanced treatment train; including ozonation, biological activated carbon (BAC) filtration and granular activated carbon (GAC) adsorption to achieve water quality suitable for potable reuse and assess the impact of a range of operating conditions for emerging contaminant removal at pilot-scale.

The results from this study showed that carbon-based treatment train is equally effective as more commonly used, and more costly, membrane-based treatment trains in terms of pathogen and disinfection byproduct removal. A multiple-barrier approach was implemented, with each treatment stage capable of removing total organic carbon (TOC). GAC was responsible for removal of most of the TOC and emerging contaminants and this removal depended on the number of bed volumes of water processed by GAC. Empty bed contact time was another factor that dictated the extent of TOC removal in the BAC and GAC units as the carbon media was exhausted. Among the emerging contaminants detected, sucralose, iohexol and acesulfame-k were present in the highest concentrations in the influent and were detected consistently in the GAC effluent, thus making them good indicators of treatment performance. Apart from organics removal, BAC played an important role in removal of nutrients, such as ammonia via nitrification.

N-Nitrosodimethlyamine (NDMA) was formed in the treatment process by ozone, but was shown to be effectively removed by BAC. EBCT, temperature, ozone dose and presence of pre-oxidants, such as monochloramine, played an important role in determining the amount of NDMA removed. These factors can be further optimized to improve NDMA removal. Sodium bisulfite was used for dechlorinating monochloramine residual post ozone. Nitrification in the BAC was shown to be inhibited by excess of sodium bisulfite dose. Thus monochloramine residual needs to be dechlorinated with sodium bisulfite to help with NDMA degradation but at the same time the sodium bisulfite dose needs to be monitored to allow complete nitrification in the BAC. 1,4-dioxane, another contaminant of emerging concern, was monitored in the treatment process. Biodegradation of 1,4-dioxane was enhanced via addition of tetrahydrofuran as a growth substrate. Biodegradation of 1,4-dioxane can help reduce energy and capital costs associated with advanced oxidation processes that are currently used for 1,4-dioxane removal. Further, relying on biodegradation for the removal of 1,4-dioxane can help avoid the formation of disinfection byproducts associated with advanced oxidation processes such as ozone with peroxide or ultraviolet disinfection with peroxide.

The results from this project can be useful for designing potable reuse treatment trains and provide a baseline for removal of organic carbon and emerging contaminants. The conventionally used reverse osmosis and ultrafiltration approach is useful for organics removal in areas where the rationale behind potable reuse is water scarcity. Operational difficulties encountered during this study can prove to be important as this treatment process is scaled up to treat a total of 120 MGD of water for managed aquifer recharge. Overall the lessons learnt from this study can give a better understanding of a carbon-based treatment and further the advancement of reuse projects that have drivers other than water scarcity. / Doctor of Philosophy / The increased growth in urban areas has been accompanied by an increase in potable water demand, leading to depletion of surface and groundwater. Further, the discharge of nutrients such as nitrogen and phosphorus into some of these water bodies can lead to algal blooms. Water reuse involves treating used water and discharging into either a surface or groundwater body. Water reuse has been sought after as a solution to prevent these nutrients being discharged into surface water and to provide a sustainable solution for depletion of water sources. Direct or indirect potable reuse can include a combination of advanced treatment methods such as membrane filtration using ultrafiltration and reverse osmosis, biological filtration, granular or powdered activated carbon adsorption and disinfection methods such as ozonation and ultraviolet disinfection.

This study focused on Hampton Roads Sanitation District's managed aquifer recharge project 'sustainable water initiative for tomorrow' (SWIFT), two different advanced water treatment strategies, namely carbon-based and membrane-based were implemented on a pilot-scale (20,000 L/day). The driver for indirect potable reuse in this study was not related to water shortage but aimed at reducing the nutrients discharged into the Chesapeake Bay. Other reasons for implementing reuse included recharging the depleting groundwater levels, land subsidence, and preventing flooding and seawater intrusion near the coastal areas.

Membrane-based treatments, such as reverse osmosis, have been well established and studied for potable reuse. The less frequently used carbon-based treatment, that includes used of activated carbon for adsorption and biodegradation of organics (not involving any membrane barrier), was shown to be cost-effective and provided equal protection as that of the membrane-based system in terms of removal of pathogens. Further, since there is no membrane involved in the carbon-based treatment the energy requirements are less than that of the membrane-based treatment and concentrated brine solution is not produced, which makes it favorable for potable reuse where water scarcity is not an issue. This carbon-based treatment which included ozonation and activated carbon filtration and adsorption was further monitored and optimized for removal of organic contaminants and disinfection byproducts. Emerging contaminants such as pharmaceuticals, industrial solvents and personal care products can be harmful to human health and water ecology even at low concentrations. These contaminants are often present in wastewater effluent and can enter drinking water sources if untreated. These emerging contaminants were shown to be effectively removed by ozonation and granular activated carbon adsorption. The formation of disinfection byproducts such as N-nitrosodimethylamine in the treatment process and its removal in the biological activated carbon filtration was also monitored. The impact of temperature, presence of pre-oxidants and design factors such as ozone dose and empty bed contact time affected the removal of all these contaminants.

This study provided an understanding of implementing carbon-based treatment for managed aquifer recharge for optimizing removal of bulk organic carbon and emerging contaminants. The results from this study can be utilized for designing advanced water treatment systems and can prove to be a guideline for monitoring and removing emerging contaminants.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/106912
Date17 June 2020
CreatorsVaidya, Ramola Vinay
ContributorsCivil and Environmental Engineering, Pruden, Amy, Novak, John T., Wang, Zhiwu, Wilson, Christopher Allen
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0028 seconds