Return to search

Non-Canonical Translation in Vertebrates

Translation is a key process during gene expression: to produce proteins, ribosomes translate the coding sequences of mRNAs. However, vertebrate genomes contain more translation potential than these annotated coding sequences: translation has been detected in many non-coding RNAs and in the non-coding regions of mRNAs. To understand the role of such translation in vertebrates, I investigated: 1) the distribution of translation in vertebrate long non-coding RNAs, and 2) the effects of translation in the 5’ leaders of vertebrate mRNAs.
To quantify and localize translation in a genome-wide manner, we produced and analyzed ribosome profiling data in zebrafish, and analyzed ribosome profiling data produced by others. The nucleotide resolution afforded by ribosome profiling allows localization of translation to individual ORFs within a transcript, while its quantitative nature enables measurement of how much translation occurs within individual ORFs.
We combined ribosome profiling with a machine-learning approach to classify lncRNAs during zebrafish development and in mouse ES cells. We found that dozens of proposed lncRNAs are protein-coding contaminants and that many lncRNAs have ribosome profiles that resemble that of the 5’ leaders of coding mRNAs. These results clarify the annotation of lncRNAs and suggest a potential role for translation in lncRNA regulation.
Because much of the translation in non-coding regions of mRNAs occurs within uORFs, we further examined the effects of their translation on the cognate gene expression. While much is known about the repression of individual genes by their uORFs, how uORF repressiveness varies within a genome and what underlies this variation had not been characterized. To address these questions, we analyzed transcript sequences and ribosome profiling data from human, mouse and zebrafish.
Linear modeling revealed that sequence features at both uORFs and coding sequences contribute similarly and substantially toward modulating uORF repressiveness and coding sequence translational efficiency. Strikingly, uORF sequence features are conserved in mammals, and mediate the conservation of uORF repressiveness in vertebrates. uORFs are depleted near coding sequences and have initiation contexts that diminish their translation. These observations suggest that the prevalence of vertebrate uORFs may be explained by their functional conservation as weak repressors of coding sequence translation. / Biology, Molecular and Cellular

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/17467487
Date17 July 2015
CreatorsChew, Guo-Liang
ContributorsMurray, Andrew
PublisherHarvard University
Source SetsHarvard University
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation, text
Formatapplication/pdf
Rightsopen

Page generated in 0.0136 seconds