Return to search

High-Fat Diet-Induced Obesity Increases Resilience against Gram-Negative Bacterial Infection in Drosophila Larvae

<p> Obesity is known to lower the quality of life of organisms and much effort has gone towards reporting the interactions between obesity and the immune response with one example being the metabolic syndrome caused by obesity-related inflammation. Work using <i>Drosophila</i> has shown high-fat diets affect cardiac function, lifespan, and glucose homeostasis. To determine whether metabolic syndrome can be modeled in flies, <i>Drosophila melanogaster </i> were raised on a high fat diet. Several parameters of the stress and immune responses were assayed in the presence and absence of infection using Gram-negative bacterium, <i>Serratia marcescens</i>. This study found that a high fat diet increased expression of cytochrome oxidase C subunit COX4L. High fat larvae had a reduced bacterial load, higher expression of the antimicrobial peptide <i>Diptericin</i>, and improved survival rate following acute infection. This study supports using <i>Drosophil </i>a as a model to improve understanding of metabolic-immune interactions and reports antimicrobial benefits from a high fat diet.</p><p>

Identiferoai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:10288987
Date24 October 2017
CreatorsHuynhle, Marvin
PublisherCalifornia State University, Long Beach
Source SetsProQuest.com
LanguageEnglish
Detected LanguageEnglish
Typethesis

Page generated in 0.0016 seconds