abstract: Signal processing techniques have been used extensively in many engineering problems and in recent years its application has extended to non-traditional research fields such as biological systems. Many of these applications require extraction of a signal or parameter of interest from degraded measurements. One such application is mass spectrometry immunoassay (MSIA) which has been one of the primary methods of biomarker discovery techniques. MSIA analyzes protein molecules as potential biomarkers using time of flight mass spectrometry (TOF-MS). Peak detection in TOF-MS is important for biomarker analysis and many other MS related application. Though many peak detection algorithms exist, most of them are based on heuristics models. One of the ways of detecting signal peaks is by deploying stochastic models of the signal and noise observations. Likelihood ratio test (LRT) detector, based on the Neyman-Pearson (NP) lemma, is an uniformly most powerful test to decision making in the form of a hypothesis test. The primary goal of this dissertation is to develop signal and noise models for the electrospray ionization (ESI) TOF-MS data. A new method is proposed for developing the signal model by employing first principles calculations based on device physics and molecular properties. The noise model is developed by analyzing MS data from careful experiments in the ESI mass spectrometer. A non-flat baseline in MS data is common. The reasons behind the formation of this baseline has not been fully comprehended. A new signal model explaining the presence of baseline is proposed, though detailed experiments are needed to further substantiate the model assumptions. Signal detection schemes based on these signal and noise models are proposed. A maximum likelihood (ML) method is introduced for estimating the signal peak amplitudes. The performance of the detection methods and ML estimation are evaluated with Monte Carlo simulation which shows promising results. An application of these methods is proposed for fractional abundance calculation for biomarker analysis, which is mathematically robust and fundamentally different than the current algorithms. Biomarker panels for type 2 diabetes and cardiovascular disease are analyzed using existing MS analysis algorithms. Finally, a support vector machine based multi-classification algorithm is developed for evaluating the biomarkers' effectiveness in discriminating type 2 diabetes and cardiovascular diseases and is shown to perform better than a linear discriminant analysis based classifier. / Dissertation/Thesis / Ph.D. Electrical Engineering 2012
Identifer | oai:union.ndltd.org:asu.edu/item:16002 |
Date | January 2012 |
Contributors | Buddi, Sai (Author), Taylor, Thomas (Advisor), Cochran, Douglas (Advisor), Nelson, Randall (Committee member), Duman, Tolga (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 131 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0015 seconds