Flax shives are a source of abundant biomass from renewable sources. They are considered to be environmentally benign and have a high-energy content for heating and generation of electricity, but only after being processed into pellets. Pelleting of the shives was done by using the single-pelleter and pilot-scale mill. The effect of grinding with screens of 2.4, 3.2, and 6.4 mm on unit density and durability was conducted with a completely randomized design using shives from Biofibre Industries Inc., Canora, SK. The central composite face-centered design with 3 levels of lower grade canola meal used as a binder (18, 21, and 24%), moisture content (8, 11, and 14% (w.b)), and hammer mill screen size (3.2, 4.8, and 6.4 mm) was used to determine the effects of these three factors on the properties of fuel pellets made from shives obtained from Biolin Research Inc., Saskatoon, SK.
The initial moisture content of coarse flax shives from both sources was about 10.5% wet basis (w.b.). The moisture content of flax shive grinds ranged from 9.6 to 10.5% (w.b.) after grinding, using the smaller screens for the Biofibre material, while the moisture content ranged from 7.9 to 8.6% (w.b.) for shives from Biolin. Also, smaller screen size reduced the geometric mean particle size for shives from both sources. The use of the smaller hammer mill screen resulted in an increase in both bulk and particle density of shives. There was a decrease in coefficient of the internal friction of shives from 0.20 to 0.14 and an increase in a cohesion of shives from 2.18 to 3.83 kPa when the screen size decreased from 6.4 to 3.2 mm. The flax shives contained cellulose (53.27%), hemicelluloses (13.62%), and lignin (20.53%) at a moisture content of 7.9% (w.b). Specific heat capacity of flax shives changed from 1.5 to 2.7 kJ/ (kg °C) when the moisture content was increased from 8 to14% (w.b.) and temperature from 15 to 80°C. The shives had the combustion energy of 17.67 MJ/kg at a moisture content of 8.1% (w.b.).<p>
The smallest screen size (2.4 mm) resulted in the highest unit density (1010 kg/m3) and the highest durability (88%) in the pellets produced by the single-pelleting equipment. The change in length of pellets produced by the pilot-scale mill increased as canola meal increased from 18 to 24% at the highest moisture content (%). The pellets were more stable at the highest moisture content when the lowest canola meal used. The addition of 18% canola meal and grinds from a screen size of 6.4 mm produced the highest unit density in the pellets at all moisture levels. The highest bulk density (682 kg/m3) was obtained from shive mixtures with 18% canola meal and a moisture content of 8%. The highest hardness and durability were found for the shive pellets that were produced with 18% canola meal at a moisture content of 14% (w.b). Pellets that were produced at a moisture content of 14% (w.b) resulted in the lowest percentage of moisture absorption.
The inclusion of the canola meal in the shive mixture resulted in an increase in the combustion energy of the pellets because of the fat content in the binder. The two levels of canola meal for shive pellets had essentially the same level of emissions. However, there were significant differences between shive pellets and commercial wood pellets in the level of the emissions. Lower amounts of methane (1.29 ppm) and oxygen (164.3 ppt) were found for flax shive pellets than of methane (1.63 ppm) and oxygen (176.6 ppt) in commercial wood pellets.<p>
In short, pelleting of flax shives into fuel pellets improved the handling characteristics, increased bulk density and energy content. Fuel pellets made from flax shives had less emission of methane and oxygen from combustion when compared to commercial wood pellets.
Identifer | oai:union.ndltd.org:USASK/oai:usask.ca:etd-03292010-151153 |
Date | 07 April 2010 |
Creators | Rentsen, Bayartogtokh |
Contributors | Baik, Oon-Doo, Tabil, Lope, Maule, Charles, Panigrahi, Satyanarayan, Niu, Catherine |
Publisher | University of Saskatchewan |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-03292010-151153/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0019 seconds