Return to search

Study and Engineering of a GH11 endo-beta-xylanase, a biomass-degrading hemicellulase / Etude et ingénierie d’une endo-beta-1,4-xylanase de la famille GH11, une hémicellulase dégradant la biomasse lignocellulosique

La création de nouvelles enzymes pour l’hydrolyse de la biomasse est une stratégie clé pour ledéveloppement du bioraffinage. Dans ce contexte, les xylanases de la famille GH11 sont déjàdéployées dans de nombreux procédés industriels et donc bien positionnées pour jouer un rôleimportant dans ces procédés. La cible de cette étude, la xylanase GH11 (Tx-Xyl) de la bactérieThermobacillus xylanilyticus, est une enzyme thermostable et donc une bonne candidate pour destravaux d’ingénierie visant l’amélioration de son activité sur des substrats ligno-cellulosiques.Dans cette étude, deux stratégies d’ingénierie des enzymes ont été employées afin d’obtenir denouvelles informations portants sur les relations structure-fonction au sein de Tx-Xyl. La premièrestratégie a consisté en l’utilisation d’une approche de mutagenèse aléatoire, couplée à l’emploi deméthodes de recombinaison in vitro. Ces travaux avaient pour objectif d’améliorer la capacitéhydrolytique de Tx-Xyl sur la paille de blé. La deuxième stratégie mise en oeuvre s’est appuyée surune approche semi-rationnelle visant la création d’une enzyme chimérique, qui bénéficierait d’uneamélioration des interactions enzyme-substrat au niveau du sous-site -3.Le premier résultat majeur de cette thèse concerne le développement d’une méthode de criblagequi permet l’analyse à haut débit de banques de mutants pour la détection de variants quiprésentent une activité hydrolytique accrue directement sur paille de blé. A l’aide de ce crible, nousavons pu analyser plusieurs banques de mutants, représentant un total de six générations demutants, et identifier une série de combinaisons de mutations différentes. D’un côté, un variant,comportant deux mutations silencieuses, permet une meilleure expression de Tx-Xyl, alors qued’autres enzymes mutées présentent des modifications intrinsèques de leurs aptitudes catalytiques.Comparés à l’enzyme parentale Tx-Xyl, certains mutants solubilisent davantage les arabinoxylanes dela paille et, lorsqu’ils sont déployés avec un cocktail de cellulases, participent à une réactionsynergique qui permet un accroissement du rendement des pentoses et du glucose libérés.A l’aide d’une approche semi-rationnelle, une séquence de 17 acides aminés en provenance d’unexylanase GH11 fongique a été ajoutée à l’extrémité N-terminale de Tx-Xyl, afin de créer de nouveauxbrins β. L’enzyme chimérique a pu être exprimée avec succès et caractérisée. Néanmoins, l’analysede ses propriétés catalytiques a révélé que celle-ci ne présente pas davantage d’interactions avec sonsubstrat dans le sous-site -3, mais les résultats obtenus fournissent de nombreux renseignements surles relations structure-fonction au sein de l’enzyme. De plus, ces travaux nous permettent depostuler que Tx-Xyl posséderait un site de fixation secondaire pour les xylanes, un élement jusqu’iciinsoupçonné dans cette enzyme. Par ailleurs, l’analyse de nos résultats nous permet de proposer uneexplication rationnelle pour l’échec de notre stratégie initiale / Engineering new and powerful enzymes for biomass hydrolysis is one area that will facilitate thefuture development of biorefining. In this respect, xylanases from family GH11 are already importantindustrial biocatalysts that can contribute to 2nd generation biorefining. The target of this study, theGH11 xylanase (Tx-Xyl) from Thermobacillus xylanilyticus is thermostable, and is thus an interestingtarget for enzyme engineering, aiming at increasing its specific activity on lignocellulosic biomass,such as wheat straw. Nevertheless, the action of xylanases on complex biomass is not yet wellunderstood, and thus the use of a rational engineering approach is not really feasible.In this doctoral study, to gain new insight into structure-function relationships, two enzymeengineering strategies have been deployed. The first concerns the development of a randommutagenesis and in vitro DNA shuffling approach, which was used in order to improve the hydrolyticpotency of Tx-Xyl on wheat straw, while the second strategy consisted in the creation of a chimericenzyme, with the aim of probing and improving -3 subsite binding, and ultimately improvinghydrolytic activity.The first key results that has been obtained is the development of a novel high-throughputscreening method, which was devised in order to reliably pinpoint mutants that can better hydrolyzewheat straw. Using this screening method, several generations of mutant libraries have beenanalyzed and a series of improved enzyme variants have been identified. One mutant, bearing silentmutations, actually leads to higher gene expression, while others have intrinsically altered catalyticproperties. Testing of mutants has shown that some of the enzyme variants can improve thesolubilization of wheat straw arabinoxylans and can work in synergy with cellulose cocktails torelease both pentose sugars and glucose.Using a semi-rational approach, 17 amino acids have been added to the N-terminal of Tx-Xyl, withthe aim of adding two extra β-strands coming from a GH11 fungal xylanase. A chimeric enzyme hasbeen successfully expressed and purified and its catalytic properties have been investigated.Although this approach has failed to create increased -3 subsite binding, the data presented revealsimportant information on structure-function relationships and suggest that Tx-Xyl may possess ahitherto unknown secondary substrate binding site. Moreover, a rational explanation for the failureof the original strategy is proposed.

Identiferoai:union.ndltd.org:theses.fr/2011ISAT0039
Date21 July 2011
CreatorsSong, Letian
ContributorsToulouse, INSA, O'Donohue, Michael, Bozonnet, Sophie
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0037 seconds