Return to search

Influence of scaffold geometries on spatial cell distribution

A limitation to engineering viable thick tissues (greater than a few hundred microns in thickness) has been the lack of vascularisation and a vascular supply. A key element in engineering such tissues is the generation of a supporting scaffold with a defined and wellcharacterized architecture. To date relatively little attention has been paid to characterization. The objective of this research was to develop well-characterized structures which will inform the rational design of the next generation of engineered thick tissues. Specifically, this research aimed to test combinations of various culturing environments, cell mono- and co-cultures, and scaffold architectures; develop improved imaging techniques and structural/spatial analytical methods to characterise porous polymer scaffolds; and use various spatial and morphological measures to quantify the relationships between scaffold geometric structure and cell distribution. Isotropic and anisotropic pore scaffolds were manufactured and then processed with nondestructive and destructive imaging methods, and characterised using image analysis methods to measure geometric parameters such as the degree of anisotropy/isotropy, porosity, and fractal parameters of pore and strut networks. Cells were introduced into scaffolds using a range of seeding methods and cultured in static and hydrodynamic environments. Quantification of the spatial cell distribution in cell-seeded scaffolds was done with first-order spatial statistics and fractal analysis. Findings comparing various destructive and non-destructive imaging methods found that cryotape cryohistology was the most accurate method for processing bare polymer scaffolds and eliminated histological artefacts common to other techniques. It was found with the various image analysis methods, surface and internal scaffold geometric architectures were strongly isotropic for porogen-fused porogen-leached scaffolds and anisotropic for TIPS scaffolds. For both isotropic and anisotropic pore scaffolds, collagen hydrogel infusion and droplet methods gave the highest cell seeding efficiencies (at 100% efficiency). The key finding in this study was that first-order spatial statistics and fractal analysis of cell distribution revealed that the geometric structure of the scaffolds had the strongest effect on spatial cell infiltration and distribution compared to the influence of culture environment or mono- and co-culture. Isotropic pore scaffolds had a higher level of cell distribution. Further work with optimizing the growth environment parameters, and utilizing collagen-infused cell-seeded scaffolds, may assist in achieving better cell growth. The work presented therefore provides the analytical basis for the rational design of tissue engineering scaffolds.

Identiferoai:union.ndltd.org:ADTP/258036
Date January 2009
CreatorsKo, Henry Chung Hung, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW
PublisherPublisher:University of New South Wales. Graduate School of Biomedical Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0022 seconds