Return to search

The effect of pulse structure on soft tissue laser ablation at mid-infrared wavelengths

BIOMEDICAL ENGINEERING
THE EFFECT OF PULSE STRUCTURE ON SOFT TISSUE LASER ABLATION
AT MID-INFRARED WAVELENGTHS
MARK ANDREW MACKANOS
Dissertation under the direction of Professor E. Duco Jansen
A series of experimental investigations have demonstrated that targeting a mid-infrared Mark-III Free-Electron Laser to wavelengths near 6.45 Ým results in tissue ablation with minimal collateral damage and substantial efficiency useful for human surgery. Thermodynamic reasoning suggests that the minimal collateral damage at this wavelength is due to the differential absorption of protein and water; which causes compromised tissue integrity by laser heating of the non-aqueous components prior to explosive vaporization. These properties are advantageous for surgery because they reduce the structural integrity of the tissue, thus reducing amount of energy needed for ablation. While the FEL, based on these findings, has been used successfully in eight human surgeries to date, it is unlikely that this laser will become broadly used clinically due to its expense and difficult implementation. Recent developments in conventional laser technology have provided access to this wavelength. While the average and peak power of these sources are still not equivalent to the FEL, recent data indicates that ablation studies are feasible. The research described here investigates the role of pulse structure with regards to soft tissue ablation to determine the feasibility of these sources as potential FEL replacements for clinical applications. Relevant parameters including the threshold radiant exposure and ablated crater depth were studied for comparison of the native FEL micropulse with a stretched FEL micropulse and a ZnGeP2 OPO. Brightfield imaging was used to analyze the effect of pulse structure on the dynamics of ablation, while histology on cornea and dermis was performed to study pulse effects on thermal damage. Mass spectrometry was also used to investigate whether non-linear effects are involved with the FEL micropulse in changing the chemical structure of proteins prior to ablation. The results of this analysis show that the micropulse structure of the FEL does not play a role in the efficient ablation of soft tissue with minimal collateral damage that has been shown previously, and alternative sources remain viable alternatives to the FEL.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-11292004-165251
Date30 November 2004
CreatorsMackanos, Mark Andrew
ContributorsAnita Mahadevan-Jansen, Karen M. Joos, E. Duco Jansen, Richard F. Haglund Jr., Robert L. Galloway Jr.
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-11292004-165251/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0019 seconds