Atualmente, as nanopartículas superparamagnéticas despertam enorme interesse científico devido sua grande variedade de aplicações em biomedicina, tanto na área de diagnóstico quanto no tratamento de enfermidades. Embora muitos materiais vem sendo estudados, os óxidos de ferro (magnetita e maghemita) apresentam maiores avanços nos estudos para aplicações em medicina. A preferência por óxidos de ferro se deve a baixa toxicidade destas partículas quando comparado as nanopartículas metálicas ou ligas. Entretanto, as nanopartículas destes óxidos possuem baixas magnetizações de saturação que diminuem ainda mais com as sucessivas etapas de recobrimento necessárias para conferir funcionalidade a estas partículas. Desse modo, há uma necessidade atual para o desenvolvimento de nanopartículas superparamagnéticas com elevada magnetização, baixa toxicidade e maior facilidade de funcionalização da sua superfície com biopolímeros e agentes funcionalizantes. Neste trabalho, nanopartículas superparamagnéticas de cobalto metálico e ferrita de cobalto foram sintetizadas e suas propriedades magnéticas foram comparadas com a magnetita. Nanopartículas de cobalto foram escolhidas, pois seu elevado comportamento ferromagnético é menor apenas que o ferro metálico, além do baixo custo de seus reagentes. As nanopartículas magnéticas foram sintetizadas pelos métodos de microemulsão e decomposição térmica (baseado no método poliol) e suas composições química, estrutural, tamanho e distribuição de tamanho foram devidamente determinadas. Além disso, as nanopartículas de cobalto metálico e ferrita de cobalto foram recobertas com ouro utilizando o método de crescimento mediado por semente. Os sistemas microemulsionados utilizados neste trabalho não foram eficientes nem na síntese de nanopartículas estáveis de cobalto metálico nem no seu esperado controle morfológico. Já o método de decomposição térmica resultou em um rigoroso controle de composição química, estrutural e morfológico para as diferentes nanopartículas sintetizadas. O recobrimento com ouro foi efetivo na proteção do núcleo magnético e adicionalmente conferiu estabilidade, baixa toxicidade e bifuncionalidade às nanopartículas magnéticas através do seu fenômeno de ressonância plasmônica de superfície o qual foi preservado na nanoestrutura core@shell. O comportamento superparamagnético das nanopartículas de cobalto metálico recobertas com ouro e sua elevada magnetização de saturação foram expressivamente intensificadas quando comparadas as nanopartículas de magnetita sem recobrimento. Portanto, as nanopartículas sintetizadas neste trabalho apresentam propriedades de superfície e magnéticas otimizadas demonstrando um bom potencial para aplicações em biomedicina como sensores bifuncionais óptico-magnético. / Superparamagnetic nanoparticles have been extensively studied because its wide range of biomedical applications in both diagnostic and therapy areas. Although different materials are currently investigated, superparamagnetic iron oxides nanoparticles (SPION), magnetite and maghemite, are the most extensively studied for applications in medicine. The lower toxicity profile of the SPION becomes the most attractive than metal or alloys nanoparticles. Nevertheless, iron oxides nanoparticles have low saturation magnetization, which further decreases due to successive coats to provide their functionality, leading the actual demand to develop superparamagnetic nanoparticles with high magnetization, low toxicity and easy surface functionalization with biocompatible agents. In this work, superparamagnetic nanoparticles of metallic cobalt and cobalt ferrite were synthesized and their magnetic properties were compared with the magnetite SPION. Cobalt nanoparticles were chosen because present high ferromagnetic behavior among chemical elements, second only to iron, besides their low cost. The magnetic nanoparticles were synthesized by both microemulsion and thermal decomposition (based on the polyol process) methods and their chemical composition, structure, size and size distribution were properly characterized. In addition, the ferrite and metallic cobalt nanoparticles were coated with gold by using the seed-mediated growth method. The used microemulsion systems were not efficient enough to synthesize stable metallic nanoparticles and to promote the expected morphological control even to ferrites. Instead, the thermal decomposition processes resulted in rigorous control of chemical compositional, structure and morphology in all different prepared samples. Au-coating process was effective to protect the magnetic nuclei also giving additional stability, low toxicity and a bifunctionality to the magnetic nanoparticle since their surface plasmon resonance phenomenon was preserved in the core@shell nanostructure. The superparamagnetic behavior of the Au-coated cobalt nanoparticle was preserved and their saturation magnetization was significantly increased compared with the naked magnetite SPION. In conclusion, the synthesized nanoparticles present enhanced magnetic and surface properties showing good potential to be used in biomedical application as bifunctional optical-magnetic sensor.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-24072012-165718 |
Date | 24 May 2012 |
Creators | João Batista Souza Junior |
Contributors | Laudemir Carlos Varanda, Pedro Henrique Cury Camargo |
Publisher | Universidade de São Paulo, Química, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds