Ce travail développe des techniques non-supervisées de détection et de localisation en ligne de ruptures dans les signaux enregistrés dans un environnement bruité. Ces techniques reposent sur l'association d'une approche algébrique avec la TVE. L'approche algébrique permet d'appréhender aisément les ruptures en les caractérisant en termes de distributions de Dirac retardées et leurs dérivées dont la manipulation est facile via le calcul opérationnel. Cette caractérisation algébrique, permettant d'exprimer explicitement les instants d'occurrences des ruptures, est complétée par une interprétation probabiliste en termes d'extrêmes : une rupture est un évènement rare dont l'amplitude associée est relativement grande. Ces évènements sont modélisés dans le cadre de la TVE, par une distribution de Pareto Généralisée. Plusieurs modèles hybrides sont proposés dans ce travail pour décrire à la fois le comportement moyen (bruit) et les comportements extrêmes (les ruptures) du signal après un traitement algébrique. Des algorithmes entièrement non-supervisés sont développés pour l'évaluation de ces modèles hybrides, contrairement aux techniques classiques utilisées pour les problèmes d'estimation en question qui sont heuristiques et manuelles. Les algorithmes de détection de ruptures développés dans cette thèse ont été validés sur des données générées, puis appliqués sur des données réelles provenant de différents phénomènes, où les informations à extraire sont traduites par l'apparition de ruptures. / This work develops non supervised techniques for on-line detection and location of change-points in noisy recorded signals. These techniques are based on the combination of an algebraic approach with the Extreme Value Theory (EVT). The algebraic approach offers an easy identification of the change-points. It characterizes them in terms of delayed Dirac distributions and their derivatives which are easily handled via operational calculus. This algebraic characterization, giving rise to an explicit expression of the change-points locations, is completed with a probabilistic interpretation in terms of extremes: a change point is seen as a rare and extreme event. Based on EVT, these events are modeled by a Generalized Pareto Distribution.Several hybrid multi-components models are proposed in this work, modeling at the same time the mean behavior (noise) and the extremes ones (change-points) of the signal after an algebraic processing. Non supervised algorithms are proposed to evaluate these hybrid models, avoiding the problems encountered with classical estimation methods which are graphical ad hoc ones. The change-points detection algorithms developed in this thesis are validated on generated data and then applied on real data, stemming from different phenomenons, where change-points represent the information to be extracted.
Identifer | oai:union.ndltd.org:theses.fr/2015REIMS025 |
Date | 14 December 2015 |
Creators | Debbabi, Nehla |
Contributors | Reims, Ecole Supérieure deS Communications de Tunis, Mboup, Mamadou |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds