Return to search

QUANTUM DOT-BASED IN VIVO IMAGING OF INFLAMMATION

BIOMEDICAL ENGINEERING
QUANTUM DOT-BASED IN VIVO IMAGING OF INFLAMMATION
ASHWATH JAYAGOPAL
Thesis under the direction of Professor Frederick R. Haselton
The recruitment of leukocytes to tissue and their specific interactions with adhesion molecules are essential processes which provide for a natural mechanism of localizing immune defense. However, inappropriate immune responses can manifest as harmful inflammation in a variety of diseases. Much information has been derived from immunohistochemistry and in vitro cell culture studies, which have identified various inflammatory mechanisms and mediators. A key challenge has been the in vivo investigation of detailed cellular and molecular events in real-time, such as leukocyte extravasation. A variety of cell adhesion molecules and cell types facilitate these activities, and the ability to monitor their recruitment and proliferation would likely have an impact on the development of diagnostic and therapeutic avenues. Current imaging techniques to characterize these events are limited by low signal to background ratios, invasiveness, and fading. In this study, we use fluorescence microscopy and quantum dot-antibody conjugates to specifically investigate the expression of the cell adhesion molecule VCAM-1 in diabetic rats. The retina was used to non-invasively probe inflammatory activity in the circulation, and to investigate the impact of diabetes-induced inflammation on ocular complications. We report elevated VCAM-1 levels in diabetic rats relative to untreated controls. In addition, we observed ex vivo and in vivo quantum dot-labeled leukocytes in the healthy and diseased retinal circulation. Features of this technique include stable, high intensity of labeled species and a narrow, size-tunable emission spectra. These studies demonstrate the promise of quantum dots in the in vivo visualization of molecular and cellular inflammatory mediators.
Approved: Date:
Frederick R. Haselton 7/29/05

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-07292005-182048
Date11 August 2005
CreatorsJayagopal, Ashwath
ContributorsFrederick R. Haselton, V. Prasad Shastri
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-07292005-182048/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0016 seconds