Return to search

Diffusion Magnetic Resonance Imaging of the Human Spinal Cord in Vivo: Feasibility and Application of Advanced Diffusion Models

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that is marked by inflammation, demyelination, gliosis and axonal loss. The damage to the CNS from these mechanisms can result in an accumulation of sensorimotor impairment. Diffusion magnetic resonance imaging (MRI) offers the potential to reveal the microstructural integrity of the cervical spinal cord resulting from these pathological mechanisms, which would be useful in the diagnosis and management of MS. This dissertation investigates the application of a spectrum of diffusion models. Starting from the conventional signal model diffusion tensor imaging (DTI) and working towards biophysically based models (i.e., NODDI, SMT and DBSI), these methods are assessed based on their reproducibility in healthy controls and sensitivity to distinguish disparity in MS patients. In comparison to healthy controls, decreased axonal volume fractions were estimated in MS patients using NODDI and SMT. Furthermore, these techniques were robust when optimized for shorter acquisition times and increased coverage. Taken together, the work presented here describes the feasibility and potential of novel diffusion MRI methods for the cervical spinal cord, serving as a vital stepping stone towards the clinical implementation of characterizing spinal cord microstructure in vivo.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-08172017-090213
Date24 August 2017
CreatorsBy, Samantha
ContributorsE. Brian Welch, William A. Grissom, Seth A. Smith, Adam Anderson, Richard Dortch
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-08172017-090213/
Rightsrestrictone, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0018 seconds