Return to search

Strategies to âHydrophobizeâ Systemic siRNA Vectors and Selectively Inhibit mTORC2 in Breast Tumors Through RNA Interference

In theory, siRNAs can inhibit every known cancer-causing gene through sequence-specific RNA interference. However, almost twenty years after the discovery of RNA interference, the use of siRNAs as targeted molecular medicines remains challenging due to comprehensively poor pharmacokinetic properties of siRNA. Naked siRNA molecules are rapidly excreted through the urine and cannot inherently enter cells or access the cytosol through endosomal escape, resulting in limited bioavailability within tumor cells after systemic administration. Strategies to complex negatively-charged siRNA into cationic polyion complexes (polyplexes) have been effective for the treatment of diseases in the liver where polyplexes naturally biodistribute. But the same polyplexes have shown limited success in oncology due to rapid disassembly within the kidneys, off-target accumulation within the liver, and limited on-target accumulation within tumor tissue. Thus, a broader set of polyplex physicochemical parameters remain to be optimized in order to improve siRNA delivery to tumors after systemic administration.
Here, we show that fine-tuning hydrophobic stabilizing forces of siRNA polyplexes, through altering either the polymer carrier or siRNA molecule, can simply and effectively improve siRNA bioavailability and accumulation within solid breast tumors. In both cases, increased polyplex stability through the optimization of core hydrophobicity decreased rapid renal clearance and led to appreciable increases in blood circulation, tumor accumulation, and intratumoral siRNA bioactivity. Our updated siRNA polyplex technology enabled the first selective, therapeutic silencing of mTORC2 in HER2-amplified breast tumors. Due to the prominent role of mTORC2 within the oncogenic PI3K-Akt-mTOR pathway, selective mTORC2 inhibition slowed tumor growth through the induction of cell death and cooperated with the HER2 receptor tyrosine kinase inhibitor, lapatinib, to kill HER2-amplified tumor cells and halt tumor growth. In sum, this work systematically elucidates the impact of core hydrophobicity on siRNA polyplex performance in vivo, illustrates the broad potential for therapeutically inhibiting currently âundruggableâ cancer-causing oncogenes, and highlights the specific therapeutic potential of selectively inhibiting mTORC2 as a tumor cell killing strategy in HER2-amplified breast cancers.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-03172017-181518
Date27 March 2017
CreatorsWerfel, Thomas Anthony
ContributorsDana M. Brantley-Sieders, Justin M. Balko, Rebecca S. Cook, Todd D. Giorgio, John T. Wilson, Craig L. Duvall
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-03172017-181518/
Rightsrestrictsix, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0298 seconds