Orientador: Aparecido Nilceu Marana / Banca: Patricia Bellin Ribeiro / Banca: Roberta Spolon / Resumo: Na sociedade atual, a identificação precisa e rápida dos indivíduos é uma necessidade. Devido às crescentes preocupações sobre segurança, a Biometria tem sido proposta para este fim. A região ocular da face, que inclui o olho, as pálpebras, os cílios e as sobrancelhas, é uma das mais recentes modalidades biométricas sendo pesquisadas. Além da alta unicidade desta região da face, sua utilização representa um bom trade-off entre a utilização de toda a região da face e a utilização apenas da textura da íris dos olhos, pois possibilita uma gama maior de distâncias do indivíduo sendo identificado ao sensor. Este trabalho apresenta um novo método de autenticação de pessoas baseado em características oculares profundas, que são extraídas da região ocular da face usando uma CNN (Convolutional Neural Network). Em nosso método, em vez de usar diretamente os características profundas para a autenticação, usamos a diferença entre as características de referência e teste, gerando um vetor diferença. Então, nosso método adota uma estratégia de pares. Em seguida, um classificador SVM (Support Vector Machine) binário é treinado para determinar se um vetor diferença é genuíno ou impostor. O novo método proposto para autenticação de pessoas baseado em características oculares foi avaliado em diferentes bases de dados, contendo toda a face ou apenas a região ocular. Em nossos experimentos, a fusão de características oculares com características faciais obteve melhores resultados do que o uso... / Abstract: In modern society, accurate and quick identification of individuals is a necessity. Due to growing security concerns, Biometrics has been proposed for this purpose. The ocular region of the face, which includes the eye, eyelids, eyelashes and eyebrows, is one of the most recent biometric modalities being investigated. In addition to the high uniqueness of this region of the face, its use represents a good trade-off between the use of the entire face region and using only the texture of the iris of the eyes, since it allows a greater range of distances of the individual being identified to the sensor. This work presents a new method for identity authentication based on ocular deep features, which are extracted from the ocular region of the face by using a very deep CNN (Convolutional Neural Network). In our method, instead of using directly the deep features for the authentication, we use the difference between the probe and reference deep features, creating a difference vector. So, our method adopts a pairwise strategy. Then, a binary SVM (Support Vector Machine) classifier is trained to determine whether a given difference of deep features is genuine or impostor. The proposed new method for identity authentication based on ocular features was evaluated on different databases, containing the entire face or only the ocular region. In our experiments, the fusion of ocular features with facial features obtained better results than the use of features of the whole face when ... / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000925125 |
Date | January 2019 |
Creators | Vizoni, Marcelo Vilela. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Instituto de Biociências, Letras e Ciências Exatas. |
Publisher | Bauru, |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese, Portuguese, Texto em português; resumos em português e em inglês |
Detected Language | Portuguese |
Type | text |
Format | 75 f. : |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0021 seconds