Human life and diseases are inseparable. For millions of years, humans and their ancestors suffered from diseases, caused by infectious pathogens (e.g., bacteria, viruses, parasites) and caused by our own bodies as they age and degenerate. Within the last century, with the advent of public health measures, improved nutrition and medicine, such as antibiotics, some of the infectious diseases have been controlled. However, infectious diseases still lead to most of the non-age related deaths in the world, especially in nations with insufficient health support. My research has taken the complex and dynamic contact networks as well as heterogeneity in disease transmission and recovery into account. Real social networks among individuals were used to generate an adjacency matrix in my formulas. Both, transition and recovery rates have been used as unique variables for each individual. I have used the forward Kolmogorov equation to solve the system. To control and prevent the infectious diseases such as influenza, sexually transmitted diseases, we have to model the dynamics of a particular disease, estimate the parameters, and forecast the behavior of the disease over time. The estimated parameters help us to design and implement interventions, such as vaccination, closure of public places, to limit the spread of diseases. R0, the reproduction number is an important parameter in epidemiology. R0 is the average number of secondary infections produced by a primary infection. If R0 is larger than one an epidemic will most likely happen, an R0 smaller than one suggests that the disease outbreak is local and will die out. In this study I have shown that R0 estimators that only use the the number of contacts and some network features such as covariance of coefficient are not enough to estimate the epidemic threshold. I have formulated R0 to consider both node degree distribution as well as the spectral gap in the eigenvalue of a weighted adjacency matrix of contact network. Only recently, researchers have developed theoretical approaches that can take into account dynamic networks and, independently, that can use genomic data of the pathogen, sampled from infected persons, to reconstruct the path of an epidemic. By considering the location and time of the sampled pathogen sequence data we can combine the sampled infection network and the mutational history of the pathogen to reconstruct a more accurate contact network. We can reconstruct this dynamic contact network using genetic data and epidemic parameters via a Hidden Markov Model. Sampled genome sequenced data of the pathogen are the observation and a set of dynamic networks are the hidden states in our HMM framework. The system switches between the set of dynamic contact networks to fit the best pattern to observation data. The outcome of such an analysis is the accurate dynamic network among samples of the pathogen. These set of dynamic networks capture the dynamics of the social contact network of the infected people. My model will most likely enable earlier detection of infectious disease spread in dynamic social networks than currently available methods. / A Dissertation submitted to the Department of Scientific Computing in partial fulfillment of the requirements for the degree of Doctor of Philosophy. / Summer Semester 2015. / July 17, 2015. / Includes bibliographical references. / Peter Beerli, Professor Directing Dissertation; Christopher Coutts, University Representative; Sachin Shanbhag, Committee Member; Dennis Slice, Committee Member; Alan Lemmon, Committee Member.
Identifer | oai:union.ndltd.org:fsu.edu/oai:fsu.digital.flvc.org:fsu_253187 |
Contributors | Ashki, Haleh (authoraut), Beerli, Peter (professor directing dissertation), Coutts, Christopher (university representative), Shanbhag, Sachin (committee member), Slice, Dennis E. (committee member), Lemmon, Alan R. (committee member), Florida State University (degree granting institution), College of Arts and Sciences (degree granting college), Department of Scientific Computing (degree granting department) |
Publisher | Florida State University, Florida State University |
Source Sets | Florida State University |
Language | English, English |
Detected Language | English |
Type | Text, text |
Format | 1 online resource (111 pages), computer, application/pdf |
Rights | This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them. |
Page generated in 0.0017 seconds