Les installations nucléaires sont génératrices de déchets liquides radioactifs qui doivent être traités avant leur rejet dans l'environnement. Le cobalt et l'argent radioactifs sont, après le tritium et le carbone 14, les principaux radionucléides rejetés par des réacteurs à eau pressurisée. Les traitements de décontamination d'effluents liquides actuellement mis en œuvre dans les installations nucléaires reposent sur des procédés physico-chimiques d'évaporation, de coagulation/floculation, de séparation de phase, de sorption et d'échange d'ions. Ces procédés conventionnels sont très efficaces mais présentent diverses limitations : ils ne retiennent pas ou peu le carbone 14 et, en situation accidentelle, ils ne sont pas faciles à mettre en œuvre pour traiter de grands volumes. Le développement de procédés innovants palliant à ces inconvénients est donc nécessaire. Les technologies de bio-remédiation pourraient être une alternative intéressante dans le secteur nucléaire mais très peu de procédés ont été proposés. Ce travail vise ainsi à développer une filière de traitement d'effluents nucléaires originale basée sur l'action d'une micro-algue photosynthétique, Coccomyxa actinabiotis, résistant aux rayonnements ionisants et accumulant les radionucléides et métaux toxiques. Les réflexions menées en collaboration avec les différents acteurs du projet ont permis d'établir un cahier des charges pour concevoir la filière de traitement et réaliser un pilote en tenant compte des contraintes associées au milieu nucléaire et à l'utilisation d'une matrice biologique. La filière est organisée en plusieurs opérations incluant d'une part la production et la récolte des micro-algues et d'autre part la décontamination de l'effluent. La faisabilité de chacune de ces opérations est tout d'abord étudiée à l'échelle laboratoire. Ainsi, les conditions opératoires et les outils de suivi, de contrôle, et d'optimisation relatifs aux étapes de (i) production de biomasse algale, (ii) séparation et/ou concentration de la biomasse par microfiltration et (iii) décontamination de l'effluent, en particulier l'élimination de l'argent 110m, du cobalt 60 et du carbone 14, sont recherchés. Le montage de la filière complète est ensuite proposé ; basée sur les résultats obtenus à l'échelle de laboratoire, la faisabilité de la bio-décontamination de radionucléides par la micro-algue à l'échelle pilote est également étudiée et démontrée. Ce travail de recherche permet donc d'envisager le développement d'une filière innovante de traitement des effluents liquides d'industries nucléaires et confirme la potentialité de certaines micro-algues à assurer l'élimination de polluants ciblés. / Nuclear plants produce radioactive liquid wastes which are decontaminated before they are released. Radioactive cobalt and silver are the main radionuclides released by water pressurized reactor, after tritium and carbon 14. Liquid effluents are decontaminated by physic-chemical processes, such as evaporation, coagulation, sorption and ion exchange. These technologies are very efficient but cannot neutralize entirely the carbon-14 and, in the case of emergency situation, they are difficult to implement in order to decontaminate high amount of radioactive liquids. It is necessary to look for alternative decontamination methods. Bio-remediation technologies may constitute interesting alternatives in the nuclear field as well, but only a few bio-based technologies have been proposed. This work aims to develop a treatment unit based on the use of a photosynthetic micro-alga, extremely radio-tolerant and owning high capacity to concentrate radionuclides and toxic metals. The technical specification was draft to design the process and construct the pilot unit taking into account the constraints linked to the use of a biological matrix in a nuclear environment. The pilot-scale treatment unit, based on this micro-alga, includes different tasks to ensure the objectives of the process: algae have first to be produced in a growth medium and harvested before ensuring the treatment of the contaminated effluent. The feasibility of these operations is studied at laboratory scale. Operating conditions and monitoring and optimization tools for each step, (i) biomass production, (ii) biomass separation and concentration by microfiltration, (iii) effluent decontamination of silver-110m, cobalt-60, carbon-14, are sought. Based on the results obtained at laboratory scale, the feasibility of bio-decontamination of radionuclides by the micro-alga at pilot-scale is studied and demonstrated. Through this work, the development of an innovative process has to be considered for the decontamination of liquid effluents from the nuclear industry. This work confirms the high potential of algae to ensure the pollutants elimination.
Identifer | oai:union.ndltd.org:theses.fr/2014MON13503 |
Date | 06 June 2014 |
Creators | Gouvion Saint-Cyr, Diane de |
Contributors | Montpellier 1, Wisniewski, Christelle, Rivasseau, Corinne |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds